On-line estimation of unmeasured inputs for anaerobic wastewater treatment processes

2003 ◽  
Vol 11 (9) ◽  
pp. 1007-1019 ◽  
Author(s):  
Didier Theilliol ◽  
Jean-Christophe Ponsart ◽  
Jérôme Harmand ◽  
Cédric Join ◽  
Pascal Gras
1998 ◽  
Vol 38 (2) ◽  
pp. 9-15 ◽  
Author(s):  
J. Guan ◽  
T. D. Waite ◽  
R. Amal ◽  
H. Bustamante ◽  
R. Wukasch

A rapid method of determining the structure of aggregated particles using small angle laser light scattering is applied here to assemblages of bacteria from wastewater treatment systems. The structure information so obtained is suggestive of fractal behaviour as found by other methods. Strong dependencies are shown to exist between the fractal structure of the bacterial aggregates and the behaviour of the biosolids in zone settling and dewatering by both pressure filtration and centrifugation methods. More rapid settling and significantly higher solids contents are achievable for “looser” flocs characterised by lower fractal dimensions. The rapidity of determination of structural information and the strong dependencies of the effectiveness of a number of wastewater treatment processes on aggregate structure suggests that this method may be particularly useful as an on-line control tool.


2002 ◽  
Vol 45 (10) ◽  
pp. 195-200 ◽  
Author(s):  
A. Puñal ◽  
J. Rodríguez ◽  
E.F. Carrasco ◽  
E. Roca ◽  
J.M. Lema

A diagnosis system for anaerobic wastewater treatment processes is presented. The system is able to recognise the state and trend of the operation and suggest the appropriate control action. The on-line variables measured were gas flow rate and composition (methane and carbon monoxide), feed and recycling flow rates, temperature and pH, while the manipulable inputs are feed, recycling and buffer-addition flow rates. The diagnosis system comprises a structured rule base, incorporating expert knowledge using fuzzy logic features. The structure of the system is based on the classification of information related to the process in three categories: i) the state of the process, ii) its trend and iii) the recommended set-point values for the inputs manipulated: feeding, buffer and recycling pumps. The system was applied to diagnose the operation of a 1.1 m3 hybrid UASB-UAF treating wastewater from a fibreboard production factory under different conditions (overload and underload), corresponding to some of the typical causes of destabilisation in anaerobic wastewater treatment plants. These situations require control action in order to maintain the stability and the treatment capacity of the reactor. The application of the system developed for the purpose of managing the situation proved to be reliable for supplying the actual state and trend of the process, as well as the adequate set point values to recover stable operation and/or to avoid further destabilisation.


1990 ◽  
Vol 24 (1) ◽  
pp. 121-123 ◽  
Author(s):  
W.R. Slater ◽  
M. Merigh ◽  
N.L. Ricker ◽  
F. Labib ◽  
J.F. Ferguson ◽  
...  

2000 ◽  
Vol 21 (5) ◽  
pp. 535-544 ◽  
Author(s):  
A. Pollice ◽  
A. Rozzi ◽  
M. C. Tomei ◽  
A. C. Di Pinto ◽  
N. Limoni

2006 ◽  
Vol 53 (4-5) ◽  
pp. 25-33 ◽  
Author(s):  
J.P. Steyer ◽  
O. Bernard ◽  
D.J. Batstone ◽  
I. Angelidaki

Anaerobic digestion plants are highly efficient wastewater treatment processes with inherent energy production. Despite these advantages, many industries are still reluctant to use them because of their instability confronted with changes in operating conditions. There is therefore great potential for application of instrumentation, control and automation (ICA) in the field of anaerobic digestion. This paper will discuss the requirements (in terms of on-line sensors needed, modelling efforts and mathematical complexity) but also the advantages and drawbacks of different control strategies that have been applied to AD high rate processes over the last 15 years.


Sign in / Sign up

Export Citation Format

Share Document