scholarly journals Periodic Error Compensation for Quartz MEMS Gyroscope Drift of INS

2007 ◽  
Vol 20 (6) ◽  
pp. 539-545 ◽  
Author(s):  
Xu Jianmao ◽  
Zhang Haipeng ◽  
Sun Junzhong
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1181
Author(s):  
Chenhao Zhu ◽  
Sheng Cai ◽  
Yifan Yang ◽  
Wei Xu ◽  
Honghai Shen ◽  
...  

In applications such as carrier attitude control and mobile device navigation, a micro-electro-mechanical-system (MEMS) gyroscope will inevitably be affected by random vibration, which significantly affects the performance of the MEMS gyroscope. In order to solve the degradation of MEMS gyroscope performance in random vibration environments, in this paper, a combined method of a long short-term memory (LSTM) network and Kalman filter (KF) is proposed for error compensation, where Kalman filter parameters are iteratively optimized using the Kalman smoother and expectation-maximization (EM) algorithm. In order to verify the effectiveness of the proposed method, we performed a linear random vibration test to acquire MEMS gyroscope data. Subsequently, an analysis of the effects of input data step size and network topology on gyroscope error compensation performance is presented. Furthermore, the autoregressive moving average-Kalman filter (ARMA-KF) model, which is commonly used in gyroscope error compensation, was also combined with the LSTM network as a comparison method. The results show that, for the x-axis data, the proposed combined method reduces the standard deviation (STD) by 51.58% and 31.92% compared to the bidirectional LSTM (BiLSTM) network, and EM-KF method, respectively. For the z-axis data, the proposed combined method reduces the standard deviation by 29.19% and 12.75% compared to the BiLSTM network and EM-KF method, respectively. Furthermore, for x-axis data and z-axis data, the proposed combined method reduces the standard deviation by 46.54% and 22.30% compared to the BiLSTM-ARMA-KF method, respectively, and the output is smoother, proving the effectiveness of the proposed method.


2018 ◽  
Vol 47 (7) ◽  
pp. 712003
Author(s):  
宋金龙 SONG Jin-long ◽  
石志勇 SHI Zhi-yong ◽  
王律化 WANG Lü-hua ◽  
王海亮 WANG Hai-liang

2018 ◽  
Vol 47 (3) ◽  
pp. 317004
Author(s):  
黄民双 Huang Minshuang ◽  
刘晓晨 Liu Xiaochen ◽  
马鹏 Ma Peng

Author(s):  
Ramesh Pawase ◽  
Niteen P. Futane

Background & Objective: MEMS-based gyroscopes are used in angular rate detection where precision is an important parameter; however, gyroscope output is limited by angular rate error. For minimizing these types of non-idealities, conventional external hardware-based analog or digital circuits have limitations for using in compact applications. CMOS analog ASIC for angular rate error compensation is necessary as both MEMS-CMOS technologies are supplementary and compatible. Method: In this paper, the output of MEMS gyroscope is taken as input for the compensation circuit which results in compensated angular rate. ANN is used in intelligent compensation circuit for error reduction in which offline data is trained and minimum optimum error of MSE of 1.72e-4 is achieved. ANN uses tanh sigmoidal activation function and back propagation trained MLP model with three neurons in the hidden layer. The equivalent ANN is implemented by CMOS ASIC where each neuron is implemented using Gilbert multiplier cell, differential analog adder, and differential amplifier as tanh sigmoidal circuit using OrCAD-PSpice 10.5 with 0.35 μ m technology. These blocks consist of differential configuration which has the capability of common mode interference rejection as noise becomes comparable at lower values of input analog signal. The entire ASIC consumes 77.8 mW of power which is far less and compact in size as compared to available external hardware interface circuits. Result and Conclusion: MEMS gyroscope with proposed analog ASIC becomes smart sensor with ANN based intelligent interface circuit. The proposed compensation cum interface circuit gives the average angular rate error of 1.91% in the range of minimum 0% to maximum 27% leading to improved accuracy.


Author(s):  
Ming Kuan Ding ◽  
Zhiyong Shi ◽  
Binhan Du ◽  
huaiguang wang ◽  
Lanyi Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document