Effect of components in activated sludge liquor on membrane fouling in a submerged membrane bioreactor

2006 ◽  
Vol 18 (5) ◽  
pp. 897-902 ◽  
Author(s):  
Shui-li YU ◽  
Fang-bo ZHAO ◽  
Xiao-hui ZHANG ◽  
Guo-lin JING ◽  
Xiang-hua ZHEN
Desalination ◽  
2008 ◽  
Vol 225 (1-3) ◽  
pp. 356-365 ◽  
Author(s):  
Jianfeng Li ◽  
Fenglin Yang ◽  
Yaozhong Li ◽  
Fook-Sin Wong ◽  
Hwee Chuan Chua

2014 ◽  
Vol 955-959 ◽  
pp. 1939-1943
Author(s):  
Chun Hua Zhang ◽  
Xiao Xia Ou ◽  
Feng Jie Zhang

Suspended carriers were added into a submerged membrane bioreactor (SMBR) using polypropylene non-woven fabric (PP NWF) as membrane model to treat synthetic wastewater. The changes of EPSSEPSB and EPS in activated sludge mixing liquid of MBR and in sludge on membrane model surface were researched at different aeration rate. The results showed that adding suspended carriers in MBR can increase the concentration of EPSS and EPSB in activated sludge mixing liquid, but the effect on EPSS and EPSB in the sludge on membrane model surface is related to aeration rate. Adding suspended carriers can increase the concentration of EPSS and EPSB in the sludge on membrane model surface at 0.10m3/h of aeration rate; the concentration of EPSS and EPSB in the sludge with suspended carriers is reduced when aeration rate is increased to 0.25m3/h. The study on the effect of aeration rate on EPS in sludge mixing liquid of MBR and in sludge on membrane model surface showed that an optimized aeration rate exists if suspended carriers are added to control MBR membrane fouling. At the optimized aeration rate, membrane fouling can be mitigated and controled effectively.


2011 ◽  
Vol 63 (4) ◽  
pp. 733-740 ◽  
Author(s):  
E. Sahar ◽  
M. Ernst ◽  
M. Godehardt ◽  
A. Hein ◽  
J. Herr ◽  
...  

The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8–10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin – at an MLSS of 6–9 g/L – showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Annop ◽  
P. Sridang ◽  
P. Chevakidagarn ◽  
K. Nopthavorn

The main objective was to compare the performances and the removal efficiencies of two biological treatment systems, a submerged membrane bioreactor (SMBR) and a simultaneous activated sludge (AS), for treating Palm Oil Mill Effluent (POME). Two lab scale units of SMBR and AS with a working volume of 24 L were operated under favorable biological conditions and minimized membrane fouling intensity. To achieve both carbonaceous and nitrogen removal, the cyclic air intermittent and dissolved oxygen control were performed into SMBR and AS with the influent flow rate about 16 L/d respectively. In terms of organic removal and membrane performance, the SMBR showed good removal efficiency to treat high strength wastewater with organic loading variation of POME. The average removal rates of TCOD, BOD, Turbidity, Color, Oil and Grease, NH3–N, TKN were 69±2, 76±2, 100±1, 37±21, 92±6, 67±4 and 75±10% respectively. Results pointed out the benefit of membranes retained totally the active compositions of biomass in each stage of development. The AS showed the limitation of sedimentation phase for sludge and oil separation. The characteristics of sludge in SMBR showed healthy floc formations and good settling after 240 h. The concentrations of COD and BOD in permeate were around 870±53 and 37±13 mg/L.


Sign in / Sign up

Export Citation Format

Share Document