Effect of Long-Term Rice Straw Return on Soil Glomalin, Carbon and Nitrogen

Pedosphere ◽  
2007 ◽  
Vol 17 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Jun NIE ◽  
Jian-Min ZHOU ◽  
Huo-Yan WANG ◽  
Xiao-Qin CHEN ◽  
Chang-Wen DU
Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 256-260 ◽  
Author(s):  
Jun Nie ◽  
Li C. Yin ◽  
Yu L. Liao ◽  
Sheng X. Zheng ◽  
Jian Xie

To assess the influence of long-term fertilization on weed communities of early and late rice crops, the weed species composition was investigated in experimental plots initiated in 1981 at the Key Field Experimental Monitoring Station of the Reddish Paddy Soil Eco-Environment in Wangcheng, China. The treatments were (1) a control (CK), no fertilizer; (2) N–P, no K; (3) N–K, no P; (4) P–K, no N; (5) N–P–K; (6) N–P–K + Ca, N, P, and K plus lime; (7) N–P + S, N and P plus additional rice straw return; (8) N–P–K + S, N, P, and K plus additional rice straw; (9) N–K + M, N and K plus swine manure. The results indicated that weed flora composition and density were influenced by the different fertilization treatments. Multivariate analyses indicated that changes in the weed community composition were primarily due to soil-available N, followed by light intensity on the field surface, and soil-available P. More weed species and total weed density were observed in the control and P–K plots than in plots in which N, P, and K were applied together. Omission of N application had a greater effect on the weed community than the omission of P or K applications. Nutrients derived from synthetic fertilizers and organic manure or the additional application of lime had no obvious effect on the weed community of late rice crops.


Soil Science ◽  
2014 ◽  
Vol 179 (10-11) ◽  
pp. 522-528 ◽  
Author(s):  
Yanling Wang ◽  
Jianwu Tang ◽  
Hailin Zhang ◽  
Zhiqiu Gao ◽  
Taiji Kou

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianqiang Li ◽  
Qibo Chen ◽  
Zhuang Li ◽  
Bangxiao Peng ◽  
Jianlong Zhang ◽  
...  

AbstractThe carbon (C) pool in forest ecosystems plays a long-term and sustained role in mitigating the impacts of global warming, and the sequestration of C is closely linked to the nitrogen (N) cycle. Accurate estimates C and N storage (SC, SN) of forest can improve our understanding of C and N cycles and help develop sustainable forest management policies in the content of climate change. In this study, the SC and SN of various forest ecosystems dominated respectively by Castanopsis carlesii and Lithocarpus mairei (EB), Pinus yunnanensis (PY), Pinus armandii (PA), Keteleeria evelyniana (KE), and Quercus semecarpifolia (QS) in the central Yunnan Plateau of China, were estimated on the basis of a field inventory to determine the distribution and altitudinal patterns of SC and SN among various forest ecosystems. The results showed that (1) the forest SC ranged from 179.58 ± 20.57 t hm−1 in QS to 365.89 ± 35.03 t hm−1 in EB. Soil, living biomass and litter contributed an average of 64.73%, 31.72% and 2.86% to forest SC, respectively; (2) the forest SN ranged from 4.47 ± 0.94 t ha−1 in PY to 8.91 ± 1.83 t ha−1 in PA. Soil, plants and litter contributed an average of 86.88%, 10.27% and 2.85% to forest SN, respectively; (3) the forest SC and SN decreased apparently with increasing altitude. The result demonstrates that changes in forest types can strongly affect the forest SC and SN. This study provides baseline information for forestland managers regarding forest resource utilization and C management.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 561
Author(s):  
Enze Wang ◽  
Xiaolong Lin ◽  
Lei Tian ◽  
Xinguang Wang ◽  
Li Ji ◽  
...  

Rice straw is a byproduct of agricultural production and an important agricultural resource. However, rice straw has not yet been effectively used, and incorrect treatment methods (such as burning in the field) can cause serious damage to the environment. Studies have shown that straw returning is beneficial to soil, but there have been few studies focused on the effect of the amount of short-term straw returned on the soil microbial community. This study evaluates 0%, 50%, 75%, and 100% rice straw returned to the field on whether returning different amounts of straw in the short term would affect the diversity and composition of the soil microbial community and the correlation between bacteria and fungi. The results show that the amount of straw returned to the field is the main factor that triggers the changes in the abundance and composition of the microbial community in the paddy soil. A small amount of added straw (≤ 50% straw added) mainly affects the composition of the bacterial community, while a larger amount of added straw (> 50% straw added) mainly affects the composition of the fungal community. Returning a large amount of straw increases the microbial abundance related to carbon and iron cycles in the paddy soil, thus promoting the carbon and iron cycle processes to a certain extent. In addition, network analysis shows that returning a large amount of straw also increases the complexity of the microbial network, which may encourage more microbes to be niche-sharing and comprehensively improve the ecological environment of paddy soil. This study may provide some useful guidance for rice straw returning in northeast China.


2017 ◽  
Vol 81 (2) ◽  
pp. 310-321 ◽  
Author(s):  
Sarah M. Collier ◽  
Matthew D. Ruark ◽  
Mack R. Naber ◽  
Todd W. Andraski ◽  
Michael D. Casler

Sign in / Sign up

Export Citation Format

Share Document