Warm hydroforming of magnesium alloy tube with large expansion ratio

2010 ◽  
Vol 20 (11) ◽  
pp. 2071-2075 ◽  
Author(s):  
Gang LIU ◽  
Ze-jun TANG ◽  
Zhu-bin HE ◽  
Shi-jian YUAN
Author(s):  
Shijian Yuan ◽  
Zejun Tang ◽  
Gang Liu

The wrinkling behavior of an AZ31B magnesium alloy tube was investigated by simulation at different loading paths and at different temperatures. The effects of strain rate, internal pressure and temperature on the wrinkles were studied. Stressstrain track was analyzed in the quasi-static strain state graph of the plane stress processing to explain the changing of the wrinkles’ shape, radius and wall thickness. It is shown that shape of the wrinkles wave along the axial direction keeps the sine wave character. The radius and thinning at the top zone of the wrinkles and the width of the wrinkles increased with the temperature, the internal pressure or the axial feeding. Moreover, hydro-formability of wrinkled parts was investigated and the improvement was observed. Finnally, as an application of using wrinkled parts as preform prior to the final calibration, a magnesium alloy tubular part with 50% expansion ratio was formed.


2009 ◽  
Vol 2009.17 (0) ◽  
pp. _125-1_-_125-2_
Author(s):  
Ken-ichi MANABE ◽  
Yu OGAWA ◽  
Kazuo TADA ◽  
Tsutomu MURAI ◽  
Humiaki NAKAGAWA

2010 ◽  
Vol 654-656 ◽  
pp. 739-742 ◽  
Author(s):  
Kenichi Manabe ◽  
Toshiji Morishima ◽  
Yu Ogawa ◽  
Kazuo Tada ◽  
Tsutomu Murai ◽  
...  

In this study, non-uniform heating approach in warm T-joint forming process is attempted for the AZ31 magnesium alloy tube. For this purpose, finite element simulation is performed to analyze the appropriate temperature distribution. The validity of the finite element(FE) model of T-joint tube hydroforming(THF) is verified by comparing the FE simulation and experimental results. Using this FE model, appropriate temperature distribution was suggested. In addition, it was showed that the wall thickness could be more uniform by optimizing the temperature condition.


2014 ◽  
Vol 783-786 ◽  
pp. 2456-2461 ◽  
Author(s):  
Gang Liu ◽  
Yong Wu ◽  
Jian Long Wang ◽  
Wen Da Zhang

Complex structural tubular components of Titanium and Magnesium alloy can be obtained at a certain temperature by high pressure pneumatic forming (HPPF) with gas medium or warm hydroforming with pressurized liquid medium. At 800°C, through experimental research on HPPF of TA18 Ti-alloy tube with expansion ratio of 50%, the influence of axial feeding on thickness distribution of the workpiece was studied. Using reasonable loading curve, the component with large ratio can be formed with a small thinning ratio as 13% with total axial feeding amount of 40mm. At 850°C, HPPF experiments of TA18 Ti-alloy component with square section were carried out. The influence of gas pressure on thickness distribution and corner filling process were analyzed. The larger the pressure, the sooner the displacement changes at the corner, and the shorter corner filling term. At pressure of 30 MPa, small corner with the relative corner radius of 2.0 can be obtained within 168s. For Mg-alloy tubular part, warm hydroforming with non-uniform temperature field was studied. By using reasonable axial temperature field and loading path, the maximum thinning ratio of Mg-alloy tubular component with expansion ratio of 35% was reduced from 21.6% to 11.6%.


2010 ◽  
Vol 20 (7) ◽  
pp. 1288-1293 ◽  
Author(s):  
Ze-jun TANG ◽  
Gang LIU ◽  
Zhu-bin HE ◽  
Shi-jian YUAN

2014 ◽  
Vol 622-623 ◽  
pp. 347-352
Author(s):  
Gang Liu ◽  
Jian Long Wang ◽  
Ze Jun Tang ◽  
Yong Wu

A process with gas pressure up to 70MPa is introduced, which is called High Pressure Pneumatic Forming (HPPF), comparing to superplastic forming (SPF) with pressure lower than 5MPa. HPPF process can be used to form tube blank at lower temperature with high energy efficiency and also at higher strain rate than SPF. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPPF was studied through experiment in the temperature range of 700~850°C. To know the formability of the Ti-alloy tube, HPPF experiments of a large expansion tube and a square cross-section tube were carried out at different temperature and pressure. The limit expansion ratio and limit radius were measured to evaluate the forming limit of Ti-3Al-2.5V tube within HPPF. The results show that the lower the pressure, the better formability and the lower efficiency. At a constant pressure, the strain rate increases exponentially with bulging time during the free bulging procedure, but decreases exponentially during the small corner calibration. Through EBSD pictures, the deformation mechanism of the corner forming process in HPPF was analyzed. Because of a nonconstant strain rate deformation state and complicated stress and strain state during HPPF, the microstructure at the transition zone of the components are also nonhomogenous, but the grains are refined to a certain extent. Key words: HPPF, Ti-3Al-2.5V, limit expansion ratio, corner forming


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 813
Author(s):  
Bo Jiang ◽  
Dongdong Zhang ◽  
Hong Xu ◽  
Yongbing Liu ◽  
Zhanyi Cao ◽  
...  

In this work, we reported the high ductility of an extruded AZ61 magnesium alloy tube achieved by electropulsing current-assisted tension. The elongation of the alloy reached up to about 45%, which is largely superior to the majority of AZ61 wrought Mg alloys. We found that the hardening capacity of the alloy seemed to slightly increase as the electropulsing frequency increased. Furthermore, electropulsing can arouse the serrated flow phenomenon. Here we proposed an equation describing the correlation between the average amplitude and frequency: Aa = C − 6 × 10−3f, where Aa is the average amplitude, f is the frequency, and C is the constant. In addition, introducing electropulsing current pronouncedly reduced the tendency of twinning, but the twinning fraction seemed to fail depending on the electropulsing frequency. Based on microstructure analysis, we concluded that the outstanding ductility of the studied alloy was mainly due to the combined role of the thermal effects from Joule heating, the athermal effects from electron wind, and the magnetic effects from the electropulsing current. The serrated flow phenomenon occurred along stress–strain curves after electropulsing treatment, and the underlying reasons also were uncovered.


Sign in / Sign up

Export Citation Format

Share Document