Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui–Jonas model

2013 ◽  
Vol 23 (9) ◽  
pp. 2692-2699 ◽  
Author(s):  
Xiao LIU ◽  
Luo-xing LI ◽  
Feng-yi HE ◽  
Jia ZHOU ◽  
Bi-wu ZHU ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Dayu Shu ◽  
Jing Wang ◽  
Menghao Jiang ◽  
Gang Chen ◽  
Liwei Lu ◽  
...  

The dynamic recrystallization (DRX) behavior of as-extruded AM50 magnesium alloy was modelled and simulated by a cellular automaton (CA) method. Isothermal compression experiments were conducted, and the characteristic parameters in the CA model were obtained by the testing stress–strain flow curves in a wide temperature range of 250–450 °C and strain rate range of 0.001–10 s−1. The flow stress, DRX volume fraction and DRX grain size of the as-extruded AM50 magnesium alloy were predicted by CA simulation. The results showed that the DRX behavior of the studied magnesium alloy was susceptive with the temperature and strain rate; meanwhile, the prediction results were approximate to the experimental values, indicating that the developed CA model can make a confident estimation on the DRX behavior of the as-extruded AM50 magnesium alloy in high temperature conditions.


2018 ◽  
Vol 37 (7) ◽  
pp. 635-647 ◽  
Author(s):  
Le Li ◽  
Li-yong Wang

AbstractIn order to study dynamic recrystallization behavior of the as-extruded 3Cr20Ni10W2 under isothermal compression conditions, a cellular automaton (CA) model was applied to simulate hot compression. Analysis on the strain–stress curves indicates that dynamic recrystallization is the main softening mechanism for the 3Cr20Ni10W2 when the deformation occurred in the temperature range of 1203–1303 K with an interval of 50 K and strain rate range of 0.01–10 s−1. The deformation temperature and strain rate have a significant influence on the dynamically recrystallized grain size. Subsequently, a CA model is established to simulate the dynamic recrystallization behaviors of the studied alloy. The simulated results show that the mean grain size increases with the increased deformation temperature and decreases with the increased strain rate, which is consistent with the experimental result. In addition, the average absolute relative error, which is 13.14%, indicates that the process of the dynamic recrystallization and the dynamically recrystallized grain size can be well predicted by the present CA model.


Sign in / Sign up

Export Citation Format

Share Document