Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation

2015 ◽  
Vol 25 (6) ◽  
pp. 1917-1925 ◽  
Author(s):  
Rong-chang ZENG ◽  
Zhen-guo LIU ◽  
Fen ZHANG ◽  
Shuo-qi LI ◽  
Qing-kun HE ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Xing Han ◽  
Jia Hu ◽  
Yong-Qin Wang ◽  
Tian-Bing Xiao ◽  
Wei Xia ◽  
...  

A super-hydrophobic anti-corrosion film was facilely prepared via in situ growth of layered double hydroxides (LDHs) on the etched AZ31 magnesium alloy and then modification by 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) in this work. The morphology, structure, composition, surface roughness and water contact angles (WCA), and the anti-corrosion performance of the samples were investigated. The results revealed that the micro/nano hierarchical surface morphology of the films was composed of island structures obtained after chemical etching and MgAl-LDH nanowalls grown in situ. The best hydrophobicity (CA = 163°) was obtained on the MgAl-LDHs with the maximum surface roughness. Additionally, the potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion test indicated that the super-hydrophobic LDH films provided better corrosion resistance to AZ31 magnesium alloy due to the double-protection derived from the LDHs and super-hydrophobic properties. Furthermore, the contact angle could be kept at above 140° after dipped in 3.5 wt% NaCl solution for 6 days.


Vacuum ◽  
2021 ◽  
pp. 110146
Author(s):  
Wenling Xie ◽  
Yiman Zhao ◽  
Bin Liao ◽  
Pan Pang ◽  
Dongsing Wuu ◽  
...  

2012 ◽  
Vol 22 (11) ◽  
pp. 2713-2718 ◽  
Author(s):  
Xue-jun CUI ◽  
Chun-hai LIU ◽  
Rui-song YANG ◽  
Ming-tian LI ◽  
Xiu-zhou LIN ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 784
Author(s):  
Longlong Zhang ◽  
Yuanzhi Wu ◽  
Tian Zeng ◽  
Yu Wei ◽  
Guorui Zhang ◽  
...  

The purpose of this study was to improve the cellular compatibility and corrosion resistance of AZ31 magnesium alloy and to prepare a biodegradable medical material. An aminated hydroxyethyl cellulose (AHEC) coating was successfully prepared on the surface of a micro-arc oxide +AZ31 magnesium alloy by sol–gel spinning. The pores of the micro-arc oxide coating were sealed. A polarization potential test analysis showed that compared to the single micro-arc oxidation coating, the coating after sealing with AHEC significantly improved the corrosion resistance of the AZ31 magnesium alloy and reduced its degradation rate in simulated body fluid (SBF). The CCK-8 method and cell morphology experiments showed that the AHEC + MAO coating prepared on the AZ31 magnesium alloy had good cytocompatibility and bioactivity.


2018 ◽  
Vol 11 (3) ◽  
pp. 3493-3505 ◽  
Author(s):  
Mario Aparicio ◽  
Jadra Mosa ◽  
Gabriela Rodriguez ◽  
Jennifer Guzman ◽  
Quentin Picard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document