Parameters affecting reaction rate and conversion of TiO2 chlorination in a fluidized bed reactor: Experimental and modeling approach

2018 ◽  
Vol 28 (10) ◽  
pp. 2114-2124 ◽  
Author(s):  
Hossein BORDBAR ◽  
Hossein ABEDINI ◽  
Ali Akbar YOUSEFI
2010 ◽  
Vol 62 (4) ◽  
pp. 947-955 ◽  
Author(s):  
Xiao-ming Li ◽  
Qi Yang ◽  
Ying Zhang ◽  
Wei Zheng ◽  
Xiu Yue ◽  
...  

The performance of a fluidized bed reactor using immobilized Phanerochaete chrysosporium to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solution was investigated. The contribution of lignin peroxidase (LiP) and manganese peroxidase (MnP) secreted by Phanerochaete chrysosporium to the 2,4-DCP degradation was examined. Results showed that Lip and Mnp were not essential to 2,4-DCP degradation while their presence enhanced the degradation process and reaction rate. In sequential batch experiment, the bioactivity of immobilized cells was recovered and improved during the culture and the maximum degradation rate constant of 13.95 mg (Ld)−1 could be reached. In continuous bioreactor test, the kinetic behavior of the Phanerochaete chrysosporium immobilized on loofa sponge was found to follow the Monod equation. The maximum reaction rate was 7.002 mg (Lh)−1, and the saturation constant was 26.045 mg L−1.


2003 ◽  
Vol 2 (1) ◽  
pp. 50 ◽  
Author(s):  
F. L. Camargo ◽  
J. D. Pagliuso ◽  
F. E. Milioli

This work concerns the study of the effect of limestone type on SO2 absorption in a bench fluidized bed reactor plant. Conversion and global reaction rate coefficients were established for conditions typical to fluidized bed combustion of coal. The bench plant is a bubbling bed reactor 160 mm internal diameter using silica sand as bed material, fluidized by pre-heated air. In order to simulate conditions close to the fluidized bed coal combustion ambience, the fluidizing air is pre-heated at high temperature (850 oC) and SO2 is added to the fluidizing air in a concentration typical of the process (1000 ppm). All the particulate, i.e. silica sand and limestone particles, was fed to the bed in a narrow size distribution between two subsequent ASTM sieves (with 545 μm mean diameter). In transient batch experiments charges of limestone are quickly injected into the bed, while the consequent variations of the exit concentrations of SO2, CO2 and O2 are continuously recorded. Analysis were performed on the effects of the type of limestone in the process, taking into account possible reaction controlling resistances, and considering possible effects of the calcination on the sulfation process.


2003 ◽  
Vol 2 (1) ◽  
Author(s):  
F. L. Camargo ◽  
J. D. Pagliuso ◽  
F. E. Milioli

This work concerns the study of the effect of limestone type on SO2 absorption in a bench fluidized bed reactor plant. Conversion and global reaction rate coefficients were established for conditions typical to fluidized bed combustion of coal. The bench plant is a bubbling bed reactor 160 mm internal diameter using silica sand as bed material, fluidized by pre-heated air. In order to simulate conditions close to the fluidized bed coal combustion ambience, the fluidizing air is pre-heated at high temperature (850 oC) and SO2 is added to the fluidizing air in a concentration typical of the process (1000 ppm). All the particulate, i.e. silica sand and limestone particles, was fed to the bed in a narrow size distribution between two subsequent ASTM sieves (with 545 μm mean diameter). In transient batch experiments charges of limestone are quickly injected into the bed, while the consequent variations of the exit concentrations of SO2, CO2 and O2 are continuously recorded. Analysis were performed on the effects of the type of limestone in the process, taking into account possible reaction controlling resistances, and considering possible effects of the calcination on the sulfation process.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


1993 ◽  
Vol 28 (2) ◽  
pp. 135-144 ◽  
Author(s):  
S. Matsui ◽  
R. Ikemoto Yamamoto ◽  
Y. Tsuchiya ◽  
B. Inanc

Using a fluidized bed reactor, experiments on glucose decomposition with and without sulfate reduction were conducted. Glucose in the reactor was mainly decomposed into lactate and ethanol. Lactate was mainly decomposed into propionate and acetate, while ethanol was decomposed into propionate, acetate, and hydrogen. Sulfate reduction was not involved in the decomposition of glucose, lactate, and ethanol, but was related to propionate and acetate decomposition. The stepwise reactions were modeled using either a Monod expression or first order reaction kinetics in respect to the reactions. The coefficients of the kinetic equations were determined experimentally. The modified Monod and first order reaction equations were effective at predicting concentrations of glucose, lactate, ethanol, propionate, acetate, and sulfate along the beight of the reactor. With sulfate reduction, propionate was decomposed into acetate, while without sulfate reduction, accumulation of propionate was observed in the reactor. Sulfate reduction accelerated propionate conversion into acetate by decreasing the hydrogen concentration.


Sign in / Sign up

Export Citation Format

Share Document