Characterization of aluminum based functionally graded composites developed via friction stir processing

2020 ◽  
Vol 30 (7) ◽  
pp. 1743-1755
Author(s):  
Venkatesh BIKKINA ◽  
Sadasiva Rao TALASILA ◽  
Kumar ADEPU
2021 ◽  
Vol 5 (2) ◽  
pp. 095-102
Author(s):  
Hima Sekhar Sai

An Investigation was conducted to produce Aluminium based Functionally graded material (FGM) composites by Friction stir processing (FSP). A reinforcement strategy featuring the use of Alumina and TiC reinforcements was investigated, where holes were drilled in an Aluminium plate, filled with reinforcements and stirred using FSP. A mathematical model was formulated for positioning of holes in such a manner that the composition of the reinforcements varies from maximum to minimum over a given length. Samples were subjected to various number of FSP passes from one to three with 100% overlap and its influence on particle distribution and homogeneity was studied using Scanning electron microscopy (SEM) at cross sections parallel to the tool traverse direction. A progressive gradient in hardness values was observed for the surface composites at all the passes.


Author(s):  
Namrata Gangil ◽  
Arshad Noor Siddiquee ◽  
Sameera Mufazzal ◽  
SM Muzakkir ◽  
Sachin Maheshwari

Shape memory based high performance nickel-titanium alloy particles were embedded by friction stir processing in graded concentration on the surface of light weight commercially pure magnesium cast plates. The novel functionally graded material so developed was analyzed for microhardness evolution and vibration damping effect. The nickel-titanium alloy particles were filled in a 2.5 wide × 3 mm deep slot and embedded on the surface by friction stir processing. A shallower slot 2.5 wide × 1.5 mm deep was milled over the previously embedded surface in which nickel-titanium alloy powder was again filled and embedded on the surface by second pass friction stir processing. This sequence of pass created the graded variation in nickel-titanium alloy concentration. The so fabricated functionally graded material was cut out from the plate and it was hot-forged to 2/3 thickness and subsequently quenched. The microstructural examination confirmed homogeneous dispersion of nickel-titanium alloy particles and clear interface between high and low concentration regions. The microhardness confirmed a uniform graded variation in hardness. The vibration damping tests confirm considerable improvement in the damping capacity of the fabricated functionally graded material.


2019 ◽  
Vol 72 (6) ◽  
pp. 1593-1596 ◽  
Author(s):  
T. Satish Kumar ◽  
G. Suganya Priyadharshini ◽  
S. Shalini ◽  
K. Krishna Kumar ◽  
R. Subramanian

Sign in / Sign up

Export Citation Format

Share Document