Numerical Simulation and Sensitivity Analysis of Parameters for Multistand Roll Forming of Channel Section With Outer Edge

2009 ◽  
Vol 16 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Guo Zeng ◽  
Xin-min Lai ◽  
Zhong-qi Yu ◽  
Zhong-qin Lin
2002 ◽  
Vol 23 (3) ◽  
pp. 321-328
Author(s):  
Han Zhi-wu ◽  
Liu Cai ◽  
Lu Wei-ping

2001 ◽  
Vol 116 (2-3) ◽  
pp. 205-210 ◽  
Author(s):  
Zhi-Wu Han ◽  
Cai Liu ◽  
Wei-Ping Lu ◽  
Lu-Quan Ren

2011 ◽  
Vol 473 ◽  
pp. 564-571 ◽  
Author(s):  
Romain Boman ◽  
Jean Philippe Ponthot

Due to the length of the mill, accurate modelling of stationary solution of continuous cold roll forming by the finite element method using the classical Lagrangian formulation usually requires a very large mesh leading to huge CPU times. In order to model industrial forming lines including many tools in a reasonable time, the sheet has to be shortened or the element size has to be increased leading to inaccurate results. On top of this, applying loads and boundary conditions on this smaller sheet is usually more difficult than in the continuous case. Moreover, transient dynamic vibrations, which are unnecessarily computed, may appear when the sheet hits each tool, decreasing the convergence rate of the numerical simulation. Beside this classical Lagrangian approach, an alternative method is given by the Arbitrary Lagrangian Eulerian (ALE) formalism which consists in decoupling the motion of the material and the mesh. Starting from an initial guess of the sheet geometry between the rolls, the numerical simulation is performed until the stationary state is reached with a mesh, the nodes of which are fixed in the rolling direction but are free to move on perpendicular plane, following the geometrical boundary of the sheet. The whole forming line can then be modelled using a limited number of brick and contact elements because the mesh is only refined near the tools where bending and contact occur. In this paper, ALE results are compared to previous Lagrangian simulations and experimental measurement on a U-channel, including springback. Advantages of the ALE method are finally demonstrated by the simulation of a tubular rocker panel on a 16-stands forming mill.


CIRP Annals ◽  
1995 ◽  
Vol 44 (1) ◽  
pp. 239-242 ◽  
Author(s):  
Manabu Kiuchi ◽  
Kenji Abe ◽  
Ryu Onodera

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Juan Liang ◽  
Zhirong Zhao ◽  
Can Li

Brucellosis is one of the major infectious diseases in China. In this study, we consider an SI model of animal brucellosis with transport. The basic reproduction number ℛ0 is obtained, and the stable state of the equilibria is analyzed. Numerical simulation shows that different initial values have a great influence on results of the model. In addition, the sensitivity analysis of ℛ0 with respect to different parameters is analyzed. The results reveal that the transport has dual effects. Specifically, transport can lead to increase in the number of infected animals; besides, transport can also reduce the number of infected animals in a certain range. The analysis shows that the number of infected animals can be controlled if animals are transported reasonably.


Sign in / Sign up

Export Citation Format

Share Document