BOLD Signal Drift, Regressor Collinearity, and Low-Frequency and Pharmacologic fMRI Study Designs

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S56
Author(s):  
LD Nickerson ◽  
D Ongur ◽  
BB Frederick
2021 ◽  
pp. 0271678X2097858
Author(s):  
Jinxia (Fiona) Yao ◽  
Ho-Ching (Shawn) Yang ◽  
James H Wang ◽  
Zhenhu Liang ◽  
Thomas M Talavage ◽  
...  

Elevated carbon dioxide (CO2) in breathing air is widely used as a vasoactive stimulus to assess cerebrovascular functions under hypercapnia (i.e., “stress test” for the brain). Blood-oxygen-level-dependent (BOLD) is a contrast mechanism used in functional magnetic resonance imaging (fMRI). BOLD is used to study CO2-induced cerebrovascular reactivity (CVR), which is defined as the voxel-wise percentage BOLD signal change per mmHg change in the arterial partial pressure of CO2 (PaCO2). Besides the CVR, two additional important parameters reflecting the cerebrovascular functions are the arrival time of arterial CO2 at each voxel, and the waveform of the local BOLD signal. In this study, we developed a novel analytical method to accurately calculate the arrival time of elevated CO2 at each voxel using the systemic low frequency oscillations (sLFO: 0.01-0.1 Hz) extracted from the CO2 challenge data. In addition, 26 candidate hemodynamic response functions (HRF) were used to quantitatively describe the temporal brain reactions to a CO2 stimulus. We demonstrated that our approach improved the traditional method by allowing us to accurately map three perfusion-related parameters: the relative arrival time of blood, the hemodynamic response function, and CVR during a CO2 challenge.


Author(s):  
Michał Pikusa ◽  
Rafał Jończyk

AbstractThere is evidence that attention-deficit/hyperactivity disorder (ADHD) is associated with linguistic difficulties. However, the pathophysiology underlying these difficulties is yet to be determined. This study investigates functional abnormalities in Broca’s area, which is associated with speech production and processing, in adolescents with ADHD by means of resting-state fMRI. Data for the study was taken from the ADHD-200 project and included 267 ADHD patients (109 with combined inattentive/hyperactive subtype and 158 with inattentive subtype) and 478 typically-developing control (TDC) subjects. An analysis of fractional amplitude of low-frequency fluctuations (fALFF), which reflects spontaneous neural activity, in Broca’s area (Brodmann Areas 44/45) was performed on the data and the results were compared statistically across the participant groups. fALFF was found to be significantly lower in the ADHD inattentive group as compared to TDC in BA 44, and in the ADHD combined group as compared to TDC in BA 45. The results suggest that there are functional abnormalities in Broca’s area with people suffering from ADHD, and that the localization of these abnormalities might be connected to particular language deficits associated with ADHD subtypes, which we discuss in the article. The findings might help explore the underlying causes of specific language difficulties in ADHD.


Sign in / Sign up

Export Citation Format

Share Document