Anesthetic Actions on Cardiovascular Control Mechanisms in the Central Nervous System

1994 ◽  
pp. 617-642 ◽  
Author(s):  
William T. Schmeling ◽  
Neil E. Farber
1994 ◽  
Vol 72 (5) ◽  
pp. 511-524 ◽  
Author(s):  
Roland S. Johansson ◽  
Kelly J. Cole

The control of adequate contact forces between the skin and an object (grasp stability) is examined for two classes of prehensile actions that employ a precision grip: lifting objects that are "passive" (subject only to inertial forces and gravity) and preventing "active" objects from moving. For manipulating either passive or active objects the relevant fingertip forces are determined by at least two control processes. "Anticipatory parameter control" is a feedforward controller that specifies the values for motor command parameters on the basis of predictions of critical characteristics, such as object weight and skin–object friction, and initial condition information. Through vision, for instance, common objects can be identified in terms of the fingertip forces necessary for a successful lift according to previous experiences. After contact with the object, sensory information representing discrete mechanical events at the fingertips can (i) automatically modify the motor commands, (ii) update sensorimotor memories supporting the anticipatory parameter control policy, (iii) inform the central nervous system about completion of the goal for each action phase, and (iv) trigger commands for the task's sequential phases. Hence, the central nervous system monitors specific, more or less expected peripheral sensory events to produce control signals that are appropriate for the task at its current phase. The control is based on neural modelling of the entire dynamics of the control process that predicts the appropriate output for several steps ahead. This "discrete-event, sensor-driven control" is distinguished from feedback or other continuous regulation. Using these two control processes, slips are avoided at each digit by independent control mechanisms that specify commands and process sensory information on a local, digit-specific basis. This scheme obviates explicit coordination of the digits and is employed when independent nervous systems lift objects. The force coordination across digits is an emergent property of the local control mechanisms operating over the same time span.Key words: precision grip, hand, grasp stability, grasp force, tactile afferents.


Author(s):  
В.Г. Овсянников ◽  
А.Е. Бойченко ◽  
В.В. Алексеев ◽  
А.В. Каплиев ◽  
А.Е. Шумарин ◽  
...  

Представлен обзор современных данных по изучению антиноцицептивной системы и эндогенных механизмов обезболивания. Контроль болевой чувствительности осуществляется многими структурами ЦНС, каждая из которых функционирует как самостоятельное образование. В комплексе все они входят в состав сложной системы антиноцицепции, аналогично тому, как ощущение боли является результатом интегративной функции ЦНС. Данное сообщение посвящено анализу роли информации, поступающей по толстым миелиновым волокнам в задние рога спинного мозга и нисходящих тормозных влияний на уровне задних рогов спинного мозга. Охарактеризованы структуры, влияющие на антиноцицепцию. На уровне спинного мозга обнаружены два механизма подавления боли - это сегментарный контроль и система нисходящего тормозного контроля. По современным данным обезболивающие эффекты объясняются не только сегментарным контролем, но и включением надсегментарных механизмов контроля, в т.ч. и гуморальных. Центральные структуры головного мозга оказывают не только нисходящее влияние на спинальном уровне, но и модифицируют болевые сигналы в местах их переключения в различных структурах головного мозга. Нисходящая ингибиторная система тесно взаимосвязана с тремя нейротрансмиттерными системами: опиатной, норадренергической и серотонинергической. Возникновение боли зависит не только от интенсивности ноцицептивного повреждения, но и от состояния различных звеньев антиноцицептивной системы. На основании знаний о патогенезе острой боли, структуре и функции антиноцицептивной системы дается определение понятия «боль». This review focused on the antinociceptive system and endogenous mechanisms of pain control. Multiple structures of the central nervous system control the pain sensitivity, and each of them functions as an independent entity. Together they constitute a complex system of antinociception consistent with that the sensation of pain is provided by integrative functioning of the central nervous system. This review analyzed the role of information delivered through thick myelin fibers to posterior horns and descending inhibitory effects at the level of the posterior horns. Two pain relief mechanisms were found at the spinal level, the segmental control and the descending inhibitory control system. According to current data anesthetic effects are explained not only by the segmental control but also by involvement of suprasegmental control mechanisms, including humoral ones. Central structures both exert downstream effects at the spinal level and modify pain signals at the locations where they switch over in various cerebral structures. The descending inhibitory system is closely interrelated with three neurotransmitter systems, the opiate, noradrenergic and serotonergic ones. Emergence of pain depends on both the intensity of nociceptive damage and on the condition of multiple parts of the antinociceptive system.Based on studying the pathogenesis of acute pain and the structure and function of antinociceptive system the authors provided a definition for the term of pain.


1995 ◽  
Vol 83 (5) ◽  
pp. 1082-1089 ◽  
Author(s):  
Takahiko Kamibayashi ◽  
Tadanori Mammoto ◽  
Yukio Hayashi ◽  
Atsushi Yamatodani ◽  
Koji Takada ◽  
...  

Abstract Background alpha2Adrenoceptors in the central nervous system mediate various physiologic processes, including cardiovascular control. Recently, some of these actions have been reported to be mediated by a nonadrenergic receptor, namely an imidazoline receptor. The authors previously reported that dexmedetomidine, a selective alpha2agonist, prevents the genesis of halothane-epinephrine dysrhythmias through a central mechanism. Because dexmedetomidine also binds to imidazoline receptors, we performed the current study to examine the precise receptor mechanism involved in the antidysrhythmic property of dexmedetomidine.


Sign in / Sign up

Export Citation Format

Share Document