scholarly journals Rapid Exchange of A:T Base Pairs Is Essential for Recognition of DNA Homology by Human Rad51 Recombination Protein

1999 ◽  
Vol 4 (5) ◽  
pp. 705-714 ◽  
Author(s):  
Ravindra C. Gupta ◽  
Ewa Folta-Stogniew ◽  
Shawn O'Malley ◽  
Masayuki Takahashi ◽  
Charles M. Radding
2021 ◽  
Vol 118 (33) ◽  
pp. e2108664118
Author(s):  
Nicholas Rhoades ◽  
Tinh-Suong Nguyen ◽  
Guillaume Witz ◽  
Germano Cecere ◽  
Thomas Hammond ◽  
...  

The pairing of homologous chromosomes represents a critical step of meiosis in nearly all sexually reproducing species. In many organisms, pairing involves chromosomes that remain apparently intact. The mechanistic nature of homology recognition at the basis of such pairing is unknown. Using “meiotic silencing by unpaired DNA” (MSUD) as a model process, we demonstrate the existence of a cardinally different approach to DNA homology recognition in meiosis. The main advantage of MSUD over other experimental systems lies in its ability to identify any relatively short DNA fragment lacking a homologous allelic partner. Here, we show that MSUD does not rely on the canonical mechanism of meiotic recombination, yet it is promoted by REC8, a conserved component of the meiotic cohesion complex. We also show that certain patterns of interspersed homology are recognized as pairable during MSUD. Such patterns need to be colinear and must contain short tracts of sequence identity spaced apart at 21 or 22 base pairs. By using these periodicity values as a guiding parameter in all-atom molecular modeling, we discover that homologous DNA molecules can pair by forming quadruplex-based contacts with an interval of 2.5 helical turns. This process requires right-handed plectonemic coiling and additional conformational changes in the intervening double-helical segments. Our results 1) reconcile genetic and biophysical evidence for the existence of direct homologous double-stranded DNA (dsDNA)–dsDNA pairing, 2) identify a role for this process in initiating RNA interference, and 3) suggest that chromosomes can be cross-matched by a precise mechanism that operates on intact dsDNA molecules.


1998 ◽  
Vol 26 (23) ◽  
pp. 5388-5393 ◽  
Author(s):  
E. I. Golub ◽  
R. C. Gupta ◽  
T. Haaf ◽  
M. S. Wold ◽  
C. M. Radding

DNA Repair ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Yu-Cheng Tsai ◽  
Yuzhen Wang ◽  
Damian E. Urena ◽  
Sandip Kumar ◽  
Junghuei Chen
Keyword(s):  

1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


2018 ◽  
Author(s):  
Christopher J. Smedley ◽  
Bing Gao ◽  
Suhua Li ◽  
Qinheng Zheng ◽  
Andrew Molino ◽  
...  

Sulfur-Fluoride Exchange (SuFEx) is the new generation click chemistry transformation exploiting the unique properties of S-F bonds and their ability to undergo near-perfect reactions with nucleophiles. We report here the first SuFEx based protocol for the efficient synthesis of pharmaceutically important triflones and bis(trifluoromethyl)sulfur oxyimines from the corresponding sulfonyl fluorides and iminosulfur oxydifluorides, respectively. The new protocol involves the rapid exchange of the S-F bond with trifluoromethyltrimethylsilane (TMSCF<sub>3</sub>) upon activation with potassium bifluoride in anhydrous DMSO. The reaction tolerates a wide selection of substrates and proceeds under mild conditions without need for chromatographic purification. A tentative catalytic mechanism is proposed supported by DFT calculations, involving formation of the free trifluoromethyl anion followed by nucleophilic displacement of the S-F through a five-coordinate intermediate. The preparation of a benzothiazole derived bis(trifluoromethyl)sulfur oxyimine with cytotoxic selectivity for MCF7 breast cancer cells demonstrates the utility of this methodology for the late-stage functionalization of bioactive molecules.<br>


Sign in / Sign up

Export Citation Format

Share Document