Oral Magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial

2004 ◽  
Vol 30 (3) ◽  
pp. 253-258 ◽  
Author(s):  
F Guerrero-Romero ◽  
HE Tamez-Perez ◽  
G González-González ◽  
AM Salinas-Martínez ◽  
J Montes-Villarreal ◽  
...  
2013 ◽  
Vol 2 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Esben Thyssen Vestergaard ◽  
Morten B Krag ◽  
Morten M Poulsen ◽  
Steen B Pedersen ◽  
Niels Moller ◽  
...  

ObjectiveSupraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects.Materials and methodsTo study GH-independent effects of ghrelin, seven hypopituitary men undergoing replacement therapy with GH and hydrocortisone were given ghrelin (5 pmol/kg per min) and saline infusions for 300 min in a randomized, double-blind, placebo-controlled, crossover design. Circulating RBP4 levels were measured at baseline and during a hyperinsulinemic–euglycemic clamp on both study days. To study the direct effects of GH, nine healthy men were treated with GH (2 mg at 2200 h) and placebo for 8 days in a randomized, double-blind, placebo-controlled, crossover study. Serum RBP4 levels were measured before and after treatment, and insulin sensitivity was measured by the hyperinsulinemic–euglycemic clamp technique.ResultsGhrelin acutely decreased peripheral insulin sensitivity. Serum RBP4 concentrations decreased in response to insulin infusion during the saline experiment (mg/l): 43.2±4.3 (baseline) vs 40.4±4.2 (clamp), P<0.001, but this effect was abrogated during ghrelin infusion (mg/l): 42.4±4.5 (baseline) vs 42.9±4.7 (clamp), P=0.73. In healthy subjects, serum RBP4 levels were not affected by GH administration (mg/l): 41.7±4.1 (GH) vs 43.8±4.6 (saline), P=0.09, although GH induced insulin resistance.Conclusionsi) Serum RBP4 concentrations decrease in response to hyperinsulinemia, ii) ghrelin abrogates the inhibitory effect of insulin on circulating RBP4 concentrations, and iii) ghrelin as well as GH acutely induces insulin resistance in skeletal muscle without significant changes in circulating RBP4 levels.


2018 ◽  
Vol 25 (3) ◽  
pp. 261-266 ◽  
Author(s):  
Martha Rodríguez-Morán ◽  
Luis E. Simental-Mendía ◽  
Claudia I. Gamboa-Gómez ◽  
Fernando Guerrero-Romero

2021 ◽  
Author(s):  
Stephanie Kullmann ◽  
Julia Hummel ◽  
Robert Wagner ◽  
Corinna Dannecker ◽  
Andreas Vosseler ◽  
...  

<b>Objective:</b> Insulin action in the human brain reduces food intake, improves whole-body insulin sensitivity, and modulates body fat mass and its’ distribution. Obesity and type 2 diabetes are often associated with brain insulin resistance, resulting in impaired brain-derived modulation of peripheral metabolism. So far, no pharmacological treatment for brain insulin resistance has been established. Since SGLT2 inhibitors lowers glucose levels and modulate energy metabolism, we hypothesized that SGLT2 inhibition may be a pharmacological approach to reverse brain insulin resistance. <p><b>Research Design and Methods:</b> In this randomized, double-blind, placebo-controlled clinical trial, 40 patients (mean ± SD; age: 60 ± 9 years; BMI: 31.5 ± 3.8 kg/m²) with prediabetes were randomized to receive 25 mg empagliflozin qd or placebo. Before and after 8 weeks of treatment, brain insulin sensitivity was assessed by functional MRI combined with intranasal administration of insulin to the brain.</p> <p><b>Results:</b> We identified a significant interaction between time and treatment in the hypothalamic response to insulin. Post hoc analyses revealed that only empagliflozin treated patients experienced increased hypothalamic insulin responsiveness. Hypothalamic insulin action significantly mediated empagliflozin-induced decrease in fasting glucose and liver fat.</p> <p><b>Conclusions:</b> Our results corroborate insulin resistance of the hypothalamus in humans with prediabetes. Treatment with empagliflozin for 8 weeks was able to restore hypothalamic insulin sensitivity; a favorable response that could contribute to the beneficial effects of SGLT2 inhibitors. Our findings position SGLT2 inhibition as the first pharmacological approach to reverse brain insulin resistance, with potential benefits for adiposity and whole-body metabolism.</p>


Sign in / Sign up

Export Citation Format

Share Document