Epigenetic Nature of the BIF-hosted Gold Mineralization at Ajjanahalli, Southern India: Evidence from Ore Petrography and Fluid Inclusion Studies: Comment* *See Nabarun Pal and Biswajit Mishra (2003), Gondwana Research, v. 6, pp. 531-540.

2004 ◽  
Vol 7 (2) ◽  
pp. 630-632 ◽  
Author(s):  
Jochen Kolb
2021 ◽  
Author(s):  
Debasis Pal ◽  
Sakthi Saravanan Chinnasamy ◽  
Sukumari Rekha

<p>Dharwar Craton in southern India hosts several gold bearing greenstone belts including the well-known Kolar and Hutti. Among them, the Gadag greenstone belt in the western part of Dharwar Craton contains many potential gold mines. It has three different lode systems named western, central and eastern lodes. These lodes are spatially distributed as linear groups along the shear zone with distinct lithological assemblages. Tourmaline is one of the most common hydrothermal minerals present in the alteration zones apart from chlorite, muscovite and sericite. These tourmalines show two textural association (i) occur as isolated, euhedral grains along the mylonitic foliation defined by chlorite, muscovite, sericite, quartz and carbonates (ii) occurrences of anhedral bizarre shaped tourmaline grains along with carbonate and quartz. Though texturally different, compositionally both the tourmalines are similar. They are dravite in nature with high Al<sub>tot</sub> (6.02 to 6.56 apfu), low Na (0.42 to 0.88 apfu) and medium X-vacancies (0.08 to 0.57 apfu). The predominance of Fe<sup>2+</sup> (high Fe<sup>2+</sup>/Fe<sup>3+</sup>) and low Na in the tourmaline crystal structure indicates low saline, reduced ore fluid of metamorphic origin that is responsible for gold mineralization in Gadag.</p><p>Microthermometric study of aqueous, carbonic and aqueous-carbonic inclusions from the auriferous lodes at Gadag reveal low to medium saline (0.04 to 9.59 NaCl equiv.)  H<sub>2</sub>O-NaCl-CO<sub>2</sub>±CH<sub>4</sub> ore forming fluid. Presence of trace amount of methane content within the carbonic inclusion indicates mineralization occurred at reducing environment. Thus, fluid inclusion results consistent with the tourmaline chemistry and strongly supports the metamorphic origin of ore fluids that responsible for gold mineralization at Gadag.</p>


1993 ◽  
Vol 30 (12) ◽  
pp. 2334-2351 ◽  
Author(s):  
Robert Kerrich ◽  
Robert King

Zircon and baddeleyite occur within quartz–tourmaline veins at four gold deposits in the Val-d'Or district of the Archean Abitibi Southern Volcanic Zone. Host rocks have experienced intense metasomatic enrichment of Zr, Hf, Y, and rare earth elements. The zircons contain primary inclusions of quartz, tourmaline, pyrite, albite, K-mica, scheelite, and gold, and gold occurs in primary fluid inclusions in zircons. Magmatic zircons in host rocks do not have this suite of inclusions; consequently a wall-rock inheritance model for the vein zircons is implausible. Compositionally, the zircons feature pronounced interzone and intergrain variations of Hf, Y, Yb, Th, and U, and sporadic anomalous Ce contents of ~ 1100 ppm, distinct from magmatic counterparts. Two principal types of primary fluid inclusion occur in the vein zircons. Type 1 H2O–CO2 inclusions have low salinities, variable quantities of CO2 and homogenization temperatures of 260–380 °C, and type 2 CO2 rich inclusions contain minor H2O and CH4. The vein zircons coprecipitated at 260–380 °C and ~ 2 kbar (1 kbar = 100 MPa) with coexisting minerals of undisputed hydrothermal origin, such as vein quartz and gold. In the Superior Province, mesothermal gold deposits are related in space and time to translithospheric structures that mark the diachronous accretion of allochthonous subprovinces from north to south between ~ 2710 and 2680 Ma. Consequently, vein zircon ages of ~ 2680 Ma record the primary mineralizing event, whereas aberrantly young ages for rutile, titanite, scheelite, and micas in the same vein systems, that scatter over 2630–2579 Ma, reveal the age of secondary remobilization events.


Sign in / Sign up

Export Citation Format

Share Document