2.454 The immunosuppressant, 4-deoxypyridoxine (DOP), demonstrates novel neuroprotective effects in the acute MPTP model of Parkinson's disease

2007 ◽  
Vol 13 ◽  
pp. S142
Author(s):  
Z. Baquet ◽  
A. Pani ◽  
L. Dodgen ◽  
J. Griner ◽  
Y. Jiao ◽  
...  
2021 ◽  
Author(s):  
Min-Ho Nam ◽  
Jong-Hyun Park ◽  
Hyo Jung Song ◽  
Ji Won Choi ◽  
Siwon Kim ◽  
...  

AbstractMonoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson’s disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.


2012 ◽  
Vol 62 (4) ◽  
pp. 1700-1707 ◽  
Author(s):  
Peternella S. Verhave ◽  
Marjan J. Jongsma ◽  
Roland M. Van Den Berg ◽  
Raymond A.P. Vanwersch ◽  
August B. Smit ◽  
...  

2007 ◽  
Vol 564 (1-3) ◽  
pp. 66-74 ◽  
Author(s):  
Xingchao Geng ◽  
Xuefei Tian ◽  
Pengfei Tu ◽  
Xiaoping Pu

2016 ◽  
Vol 55 (1) ◽  
pp. 554-566 ◽  
Author(s):  
Sina Shadfar ◽  
Yu-Gyeong Kim ◽  
Nikita Katila ◽  
Sabita Neupane ◽  
Uttam Ojha ◽  
...  

2013 ◽  
Vol 58 ◽  
pp. 209-219 ◽  
Author(s):  
Ana I. Rodriguez-Perez ◽  
Antonio Dominguez-Meijide ◽  
Jose L. Lanciego ◽  
Maria J. Guerra ◽  
Jose L. Labandeira-Garcia

Author(s):  
Osmar Vieira Ramires Júnior ◽  
Barbara da Silva Alves ◽  
Paula Alice Bezerra Barros ◽  
Jamile Lima Rodrigues ◽  
Shana Pires Ferreira ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


Sign in / Sign up

Export Citation Format

Share Document