Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model

2001 ◽  
Vol 32 (2) ◽  
pp. 143-172 ◽  
Author(s):  
Zheng-Ming Huang
2014 ◽  
Vol 29 (6) ◽  
pp. 377-383 ◽  
Author(s):  
S. Mohammad Mehdi Elhamian ◽  
M. Alizadeh ◽  
M. Mehrdad Shokrieh ◽  
A. Karimi ◽  
S. Pejman Madani

2021 ◽  
Vol 30 ◽  
pp. 263498332110061
Author(s):  
Gunyong Hwang ◽  
Dong Hyun Kim ◽  
Myungsoo Kim

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.


2017 ◽  
Vol 24 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Haris A. Khan ◽  
Abid Hassan ◽  
M.B. Saeed ◽  
Farrukh Mazhar ◽  
Imran A. Chaudhary

AbstractIn a woven fabric composite, arrangement and behavior of the fibers contained in the yarn and the yarns themselves lead to an intricate deformation mechanism. The current research, therefore, intends to propose a simplified mathematical micromechanics model for calculating mechanical properties of the plain weave composite using finite element analysis (FEA). A repetitive volume element (RVE) cell approach has been adopted for properties evaluation of plain weave composites. The FEA allows the modeling and portrayal of fabrics by taking into account various geometric parameters such as the yarn undulation, the probability of existence of consonances in a unit cell and interaction between warp and fill tows. These factors help in generating a mesh close to the actual fabric/composite. Additionally, a technique to represent the internal layout of composite structure employing actual dimensions of yarn geometry using conventional measurement devices, rather than using the demanding method of obtaining measurements from photomicrographs of sectioned laminates, is also proposed. The geometric symmetries as reported in the available literature were also incorporated during the model formulation. The theory of comparative displacements was then used to construe these symmetries into appropriate mechanical terms. Consequently, this leads to the formulation of boundary conditions for the RVE. The proposed finite element micromechanics model is different from the existing models in a way that it defines the yarn cross-sectional path based upon computational fluid dynamics technique rather than conventionally obtained photomicrographic results or the proposed sinusoidal paths by various researchers. Experiments were then performed on the laminates used for obtaining the geometric parameters with the aim of supporting the validity of the suggested model. The results of computational analysis were found to be in good agreement with the outcomes of experimental investigation.


2010 ◽  
Vol 12 (9) ◽  
pp. B529-B538 ◽  
Author(s):  
Jiangang Chen ◽  
Xiaohong Li ◽  
Wenguo Cui ◽  
Chengying Xie ◽  
Jie Zou ◽  
...  

2012 ◽  
Vol 570 ◽  
pp. 97-101
Author(s):  
Muhammad Tausif ◽  
Stephen J. Russell

Hydroentangling (bonding of fabrics by means of high velocity water jets), is utilised to entangle polyethylene terephthalate (PET) and glass fibre layers which are industrially applied as high performance carriers for bitumen roofing products. Conventionally, a resin post-treatment is frequently applied to strengthen pre-entangled PET/glass fabrics whereas in the current study promising mechanical properties were obtained without the need for resin treatment. Non-destructive characterisation using x-ray microtomography reveals the transverse structure of these mechanically bonded fabrics. Normal procedures for measuring delamination cannot be applied to the evaluation of hydroentangled fibrous composites.


Sign in / Sign up

Export Citation Format

Share Document