micromechanics model
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 16)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
ANASTASIA MULIANA

This study discusses simulations of the curing process in epoxy and fiberreinforced polymer composites incorporating changes in the thermal and mechanical properties of epoxy during curing at various temperatures. A coupled constitutive model that includes an exothermic process from the cross-linking, heat conduction across the specimen and deformations of the specimen from the thermal expansion and shrinkage effects is formulated. The model is used to capture the curing process in the epoxy resin. The coupled constitutive model is then integrated into a micromechanics model of fiber-reinforced composites and used to study the influence of epoxy curing on the formation of residual stresses in the composites. Furthermore, the micromechanics model is also used to predict the macroscopic properties, i.e., elastic moduli, of the cured composites. The model can then be used to understand the influence of processing parameters, i.e., temperatures and pressure, on the formation of residual stresses and their consequences on the overall properties of cured composites.


2021 ◽  
Vol 129 (15) ◽  
pp. 155108
Author(s):  
Chaonan Cong ◽  
Yongqiang Chen ◽  
Zhuping Huang ◽  
Shulin Bai

2021 ◽  
Vol 30 ◽  
pp. 263498332110061
Author(s):  
Gunyong Hwang ◽  
Dong Hyun Kim ◽  
Myungsoo Kim

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.


Sign in / Sign up

Export Citation Format

Share Document