FT-IR, FT-Raman and FT-SERS spectra of 4-aminosalicylic acid sodium salt dihydrate

Author(s):  
C.Yohannan Panicker ◽  
Hema Tresa Varghese ◽  
Annamma John ◽  
Daizy Philip ◽  
Krisztina Istvan ◽  
...  
2015 ◽  
Vol 39 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Xin Gao ◽  
Keli Chen ◽  
Heng Zhang ◽  
Lincai Peng

Abstract The parenchyma cellulose isolated from bagasse pith was used as an alternative resource for preparation of water-soluble cellouronic acid sodium salt (CAS). The influence of ultrasound treatment on the cellulose was investigated for obtaining CAS by regioselective oxidization using 4-acetamide-TEMPO and NaClO with NaClO2 as a primary oxidant in an aqueous buffer at pH 6.0. The yield, carboxylate content and polymerization degree (DP) of CAS were measured as a function of ultrasonic power, agitating time and cellulose consistency by an orthogonal test. The ultrasound-treated conditions were further improved by discussion of ultrasonic power, the most important factor influencing the yield and DP. An optimized CAS yield of 72.9% with DP value (DPv) of 212 was found when the ultrasonic strength is 550 W, agitating time is 3 h and cellulose consistency is 2.0%. The oxidation reactivity of cellulose was improved by ultrasonic irradiation, whereas no significant changes in crystallinity of cellulose were measured after ultrasonic treatment. Moreover, the ultrasound treatment has a greater effect on yielding CAS from parenchyma cellulose than from bagasse fibrous' one. The CAS was further characterized by Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM).


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


2021 ◽  
Vol 3 ◽  
pp. 100096
Author(s):  
P. Rajamani ◽  
V. Vijayakumar ◽  
N. Sundaraganesan ◽  
Mani Jeeva ◽  
Maria Susai Boobalan

Sign in / Sign up

Export Citation Format

Share Document