Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

2021 ◽  
Vol 22 (1) ◽  
pp. 132-141
Author(s):  
Rikiya Yamashita ◽  
Jin Long ◽  
Teri Longacre ◽  
Lan Peng ◽  
Gerald Berry ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dejun Zhou ◽  
Fei Tian ◽  
Xiangdong Tian ◽  
Lin Sun ◽  
Xianghui Huang ◽  
...  

2020 ◽  
Author(s):  
Rui Cao ◽  
Fan Yang ◽  
Si-Cong Ma ◽  
Li Liu ◽  
Yan Li ◽  
...  

ABSTRACTBackgroundMicrosatellite instability (MSI) is a negative prognostic factor for colorectal cancer (CRC) and can be used as a predictor of success for immunotherapy in pan-cancer. However, current MSI identification methods are not available for all patients. We propose an ensemble multiple instance learning (MIL)-based deep learning model to predict MSI status directly from histopathology images.DesignTwo cohorts of patients were collected, including 429 from The Cancer Genome Atlas (TCGA-COAD) and 785 from a self-collected Asian data set (Asian-CRC). The initial model was developed and validated in TCGA-COAD, and then generalized in Asian-CRC through transfer learning. The pathological signatures extracted from the model are associated with genotypes for model interpretation.ResultsA model called Ensembled Patch Likelihood Aggregation (EPLA) was developed in the TCGA-COAD training set based on two consecutive stages: patch-level prediction and WSI-level prediction. The EPLA model achieved an area-under-the -curve (AUC) of 0.8848 in the TCGA-COAD test set, which outperformed the state-of-the-art approach, and an AUC of 0.8504 in the Asian-CRC after transfer learning. Furthermore, the five pathological imaging signatures identified using the model are associated with genomic and transcriptomic profiles, which makes the MIL model interpretable. Results show that our model recognizes pathological signatures related to mutation burden, DNA repair pathways, and immunity.ConclusionOur MIL-based deep learning model can effectively predict MSI from histopathology images and are transferable to a new patient cohort. The interpretability of our model by association with genomic and transcriptomic biomarkers lays the foundation for prospective clinical research.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document