Time for a third-generation pneumococcal conjugate vaccine

2021 ◽  
Vol 21 (1) ◽  
pp. 14-16 ◽  
Author(s):  
Keith P Klugman ◽  
Gail L Rodgers
2021 ◽  
Vol 118 (13) ◽  
pp. e2004933118
Author(s):  
Ember (Yiwei) Lu ◽  
Hui-Han Chen ◽  
Hongqing Zhao ◽  
Sachiko Ozawa

Antimicrobial resistance (AMR) poses a serious threat to global public health. However, vaccinations have been largely undervalued as a method to hinder AMR progression. This study examined the AMR impact of increasing pneumococcal conjugate vaccine (PCV) coverage in China. China has one of the world’s highest rates of antibiotic use and low PCV coverage. We developed an agent-based DREAMR (Dynamic Representation of the Economics of AMR) model to examine the health and economic benefits of slowing AMR against commonly used antibiotics. We simulated PCV coverage, pneumococcal infections, antibiotic use, and AMR accumulation. Four antibiotics to treat pneumococcal diseases (penicillin, amoxicillin, third-generation cephalosporins, and meropenem) were modeled with antibiotic utilization, pharmacokinetics, and pharmacodynamics factored into predicting AMR accumulation. Three PCV coverage scenarios were simulated over 5 y: 1) status quo with no change in coverage, 2) scaled coverage increase to 99% in 5 y, and 3) accelerated coverage increase to 85% over 2 y followed by 3 y to reach 99% coverage. Compared to the status quo, we found that AMR against penicillin, amoxicillin, and third-generation cephalosporins was significantly reduced by 6.6%, 10.9%, and 9.8% in the scaled scenario and by 10.5%, 17.0%, and 15.4% in the accelerated scenario. Cumulative costs due to AMR, including direct and indirect costs to patients and caretakers, were reduced by $371 million in the scaled and $586 million in the accelerated scenarios compared to the status quo. AMR-reducing benefits of vaccines are essential to quantify in order to drive appropriate investment.


Author(s):  
Ravinder Kaur ◽  
Minh Pham ◽  
Karl O A Yu ◽  
Michael E Pichichero

Abstract Background Antibiotic-resistant Streptococcus pneumoniae strains may cause infections that fail to respond to antimicrobial therapy. Results reported from hospitalized patients with invasive, bacteremic infections may not be the same as those observed in a primary care setting where young children receive care for noninvasive infections. Young children experience the highest burden of pneumococcal disease. The aim of this study was to determine the antibiotic susceptibility of S. pneumoniae strains isolated from children in a primary care setting in the post–13-valent pneumococcal conjugate vaccine (PCV13) era. Methods This was a prospective collection of 1201 isolates of S. pneumoniae from 2006 through 2016 in a primary care setting. Antibiotic susceptibility testing to 16 different antibiotics of 10 classes was performed. Participants were children aged 6–36 months. Nasopharyngeal swabs were obtained from patients during acute otitis media (AOM) visits and routine healthy visits. Middle ear fluid was obtained by tympanocentesis. Results After introduction of PCV13, antibiotic susceptibility of pneumococci, especially to penicillin, initially improved largely due to disappearance of serotype 19A, included in PCV13. However, beginning in 2013, antibiotic susceptibility among pneumococcal strains began decreasing due to new serotypes not included in PCV13. In addition to reduced susceptibility to penicillin, the most recent isolates show reduced susceptibility to third-generation cephalosporins, fluoroquinolones, and carbapenems, antibiotics commonly used to treat life-threatening, invasive pneumococcal diseases. Conclusions In recent years, pneumococcal nasopharyngeal and AOM isolates from children exhibit reduced susceptibility to penicillin, third-generation cephalosporin, fluoroquinolone, and carbapenem antibiotics. The new strains have a different profile of resistance compared to the pre-PCV13 era.


Sign in / Sign up

Export Citation Format

Share Document