Sliding Mode Control of an Inverted Pendulum: Comparison on Robustness Between a Sliding Mode Control and an Optimal Regulator

1990 ◽  
Vol 23 (8) ◽  
pp. 317-322
Author(s):  
T. Ishida ◽  
T. Oshiro ◽  
T. Nagado
2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2021 ◽  
Author(s):  
Mateusz Czyzniewski ◽  
Rafal Langowski ◽  
Dawid Klassa ◽  
Mateusz Matwiszyn

Author(s):  
Satyanarayan Sadala ◽  
Balasaheb Patre ◽  
Divyesh Ginoya

This paper introduces a new continuous integral sliding mode control algorithm, where the discontinuous function of the super-twisting control law is replaced with a continuous disturbance observer for the substantial chattering attenuation. In the present integral sliding mode control, the discontinuous function generates chattering that is undesirable for several real-time applications. The proposed control strategy decreases the amplitude of the controller gain compared to the existing integral sliding mode controls, and as a consequence of this, the attenuation of chattering is achieved to a great extent. The efficacy of the proposed control algorithm is validated successfully on the single-input single-output Inverted Pendulum and 2-DOF Helicopter nonlinear coupled multi-input multi-output systems. The simulation and experimental results demonstrate the successful application of the proposed control approach to follow reference inputs and acquire robustness and stabilization of the system in the presence of limited matched perturbations and nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document