In Vitro Induction of Endocrine Differentiation Markers in Human Pancreatic Ductal Cells by Islet Neogenesis Associated Protein (INGAP)

2008 ◽  
Vol 32 (4) ◽  
pp. 339
Author(s):  
Béatrice Assouline Thomas ◽  
Lawrence Rosenberg
1995 ◽  
Vol 4 (4) ◽  
pp. 371-383 ◽  
Author(s):  
Lawrence Rosenberg

During embryogenesis, islet cells differentiate from primitive duct-like cells. This process leads to the formation of islets in the mesenchyme adjacent to the ducts. In the postnatal period, any further expansion of the pancreatic endocrine cell mass will manifest itself either by a limited proliferation of the existing islet cells, or by a reiteration of ontogenetic development. It is the latter, cell transformation by a process of differentiation from a multipotential cell, that will be referred to in this review as islet neogenesis. To better appreciate the mechanisms underlying islet cell neogenesis, some of the basic concepts of developmental biology will be reviewed. Considerable discussion is devoted to the subject of transdifferentiation, a change in a cell or in its progeny from one differentiated phenotype to another, where the change includes both morphological and functional phenotypic markers. While in vitro studies with fetal and neonatal pancreata strongly suggest that new islet tissue is derived from ductal epithelium, what is not established is whether the primary cell is a committed endocrine cell or duct-like cell capable of transdifferentiation. Next, research in the field of β-cell neogenesis is surveyed, in preparation for the examination of whether there is a physiological means of inducing islet cell regeneration, and whether the new islet mass will function in a regulated manner to reverse or stabilize a diabetic state? Our belief is that the pancreas retains the ability to regenerate a functioning islet cell mass in the postnatal period, and that the process of cell transformation leading to islet neogenesis is mediated by growth factors that are intrinsic to the gland. Furthermore, it is our contention that these factors act directly or indirectly on a multipotential cell, probably associated with the ductular epithelium, to induce endocrine cell differentiation. In other words, new islet formation in the postnatal period reiterates the normal ontogeny of islet cell development. These ideas will be fully developed in a discussion of the Partial Duct Obstruction (PDO) Model.


1978 ◽  
Vol 157 (1) ◽  
pp. 23-28 ◽  
Author(s):  
M. Singh ◽  
N. M. Parks ◽  
P. D. Webster

2003 ◽  
Vol 76 (Supplement) ◽  
pp. S60
Author(s):  
Cale N. Street ◽  
A. M. James Shapiro ◽  
Jonathan Lakey ◽  
Edmund A. Ryan ◽  
Sharleen Imes ◽  
...  

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Jonghyeob Lee ◽  
Takuya Sugiyama ◽  
Yinghua Liu ◽  
Jing Wang ◽  
Xueying Gu ◽  
...  

Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yuhua Gao ◽  
Weijun Guan ◽  
Chunyu Bai

In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.


2000 ◽  
Vol 150 (6) ◽  
pp. 1445-1460 ◽  
Author(s):  
Vincenzo Cirulli ◽  
Gillian M. Beattie ◽  
George Klier ◽  
Mark Ellisman ◽  
Camillo Ricordi ◽  
...  

Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins αvβ3 and αvβ5 and their ligands to morphogenetic events in the human endocrine pancreas.


2006 ◽  
Vol 20 (12) ◽  
pp. 3133-3145 ◽  
Author(s):  
Joshua Francis ◽  
Daniella A. Babu ◽  
Tye G. Deering ◽  
Swarup K. Chakrabarti ◽  
James C. Garmey ◽  
...  

Abstract The pancreatic and duodenal homeobox factor 1 (Pdx-1) is a Hox-like transcription factor that is responsible for the activation of the insulin gene. Previous studies have demonstrated the interaction in vitro of Pdx-1 with short (20–40 nucleotide) DNA fragments corresponding to A boxes of the insulin promoter. Precisely how Pdx-1 binds to DNA in the complex milieu of chromatin, however, has never been studied. In this study, we explored how Pdx-1-DNA interactions might be influenced by chromatin accessibility at the insulin gene in β-cells (βTC3) vs. pancreatic ductal cells (mPAC). We demonstrate that Pdx-1 occupies the endogenous insulin promoter in βTC3 cells but not in mPAC cells, a finding that is independent of the intracellular Pdx-1 protein concentration. Based on micrococcal nuclease protection assays, the difference in promoter binding between the two cell types appears to be secondary to chromatin accessibility at predicted Pdx-1 binding sites between bp −126 to −296 (relative to the transcriptional start site) of the insulin promoter. Binding studies using purified Pdx-1 and reconstituted chromatin in vitro suggest that the positioning of a nucleosome(s) within this crucial region of the promoter might account for differences in chromatin accessibility. Consistent with these observations, fluorescence colocalization studies show that Pdx-1 does not occupy regions of compacted, nucleosome-rich chromatin within the nucleus. Our findings suggest a model whereby insulin transcription in the β-cell is at least partially facilitated by enhanced chromatin accessibility within a crucial regulatory region between bp −126 to −296, thereby permitting occupancy by transactivators such as Pdx-1.


2004 ◽  
Vol 182 (1) ◽  
pp. 105-112 ◽  
Author(s):  
MR Katdare ◽  
RR Bhonde ◽  
PB Parab

The pancreatic ductal stem cells are known to differentiate into islets of Langerhans; however, their yield is limited and the islet population is not defined. Therefore, the aims of the present study were to improvise a methodology for obtaining large numbers of islets in vitro and to characterize their morphological and functional status for islet cell banking and transplantation. Pancreatic ductal epithelial cell cultures were set in serum-free medium. Monolayers of epithelial cells in culture gave rise to islet-like clusters within 3-4 weeks. The identity of neoislets was confirmed by dithizone staining and analysis of the gene expression for endocrine markers by reverse transcriptase-polymerase chain reaction (RT-PCR). The islet population obtained was analysed by image analysis and insulin secretion in response to secretagogues. The cellular extracts from neoislets were immunoreactive to anti-insulin antibody and expressed insulin, glucagon, GLUT-2, PDX-1 and Reg-1 genes. The islets generated within 3-4 weeks exhibited a mixed population of large- and small-sized islets with clear cut dichotomy in the pattern of their insulin secretion in response to L-arginine and glucose. These neoislets maintained their structural and functional integrity on cryopreservation and transplantation indicating their suitability for islet cell banking. Thus, the present study describes an improved method for obtaining a constant supply of large numbers of islets from pancreatic ductal stem cell cultures. The newly generated islets undergo functional maturation indicating their suitability for transplantation.


Sign in / Sign up

Export Citation Format

Share Document