scholarly journals Expression and Function of αvβ3 and αvβ5 Integrins in the Developing Pancreas

2000 ◽  
Vol 150 (6) ◽  
pp. 1445-1460 ◽  
Author(s):  
Vincenzo Cirulli ◽  
Gillian M. Beattie ◽  
George Klier ◽  
Mark Ellisman ◽  
Camillo Ricordi ◽  
...  

Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins αvβ3 and αvβ5 and their ligands to morphogenetic events in the human endocrine pancreas.

2022 ◽  
Vol 8 ◽  
Author(s):  
Yuhua Gao ◽  
Weijun Guan ◽  
Chunyu Bai

In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.


2005 ◽  
Vol 25 (1) ◽  
pp. 324-335 ◽  
Author(s):  
Ho-Geun Yoon ◽  
Youngsok Choi ◽  
Philip A. Cole ◽  
Jiemin Wong

ABSTRACT A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.


Blood ◽  
2009 ◽  
Vol 114 (27) ◽  
pp. 5532-5540 ◽  
Author(s):  
Stefan Kunert ◽  
Imke Meyer ◽  
Silke Fleischhauer ◽  
Martin Wannack ◽  
Janine Fiedler ◽  
...  

Abstract Terminally mature megakaryocytes undergo dramatic cellular reorganization to produce hundreds of virtually identical platelets. A hallmark feature of this process is the generation of an elaborate system of branched protrusions called proplatelets. We recently identified RanBP10 as a tubulin-binding protein that is concentrated along polymerized microtubules in mature megakaryocytes. RanBP10 depletion in vitro caused the disturbance of polymerized filaments. Here we study the function of RanBP10 in vivo by generating deficient mice using a gene-trap approach. Mutant mice show normal platelet counts, and fetal liver-derived megakaryocytes reveal only slightly reduced proplatelet formation. However, ultrastructural analysis unveiled a significantly increased geometric axis ratio for resting platelets, and many platelets exhibited disorders in microtubule filament numbers and localization. Mutant mice showed a markedly prolonged bleeding time. Granule release, a process that depends on internal contraction of the microtubule marginal coil, also was reduced. Flow cytometry analysis revealed reduced expression of CD62P and CD63 after PAR4-peptide stimulation. These data suggest that RanBP10 plays an essential role in hemostasis and in maintaining microtubule dynamics with respect to both platelet shape and function.


1995 ◽  
Vol 15 (10) ◽  
pp. 5214-5225 ◽  
Author(s):  
A D Catling ◽  
H J Schaeffer ◽  
C W Reuter ◽  
G R Reddy ◽  
M J Weber

Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.


1995 ◽  
Vol 4 (4) ◽  
pp. 371-383 ◽  
Author(s):  
Lawrence Rosenberg

During embryogenesis, islet cells differentiate from primitive duct-like cells. This process leads to the formation of islets in the mesenchyme adjacent to the ducts. In the postnatal period, any further expansion of the pancreatic endocrine cell mass will manifest itself either by a limited proliferation of the existing islet cells, or by a reiteration of ontogenetic development. It is the latter, cell transformation by a process of differentiation from a multipotential cell, that will be referred to in this review as islet neogenesis. To better appreciate the mechanisms underlying islet cell neogenesis, some of the basic concepts of developmental biology will be reviewed. Considerable discussion is devoted to the subject of transdifferentiation, a change in a cell or in its progeny from one differentiated phenotype to another, where the change includes both morphological and functional phenotypic markers. While in vitro studies with fetal and neonatal pancreata strongly suggest that new islet tissue is derived from ductal epithelium, what is not established is whether the primary cell is a committed endocrine cell or duct-like cell capable of transdifferentiation. Next, research in the field of β-cell neogenesis is surveyed, in preparation for the examination of whether there is a physiological means of inducing islet cell regeneration, and whether the new islet mass will function in a regulated manner to reverse or stabilize a diabetic state? Our belief is that the pancreas retains the ability to regenerate a functioning islet cell mass in the postnatal period, and that the process of cell transformation leading to islet neogenesis is mediated by growth factors that are intrinsic to the gland. Furthermore, it is our contention that these factors act directly or indirectly on a multipotential cell, probably associated with the ductular epithelium, to induce endocrine cell differentiation. In other words, new islet formation in the postnatal period reiterates the normal ontogeny of islet cell development. These ideas will be fully developed in a discussion of the Partial Duct Obstruction (PDO) Model.


1978 ◽  
Vol 157 (1) ◽  
pp. 23-28 ◽  
Author(s):  
M. Singh ◽  
N. M. Parks ◽  
P. D. Webster

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5186 ◽  
Author(s):  
Juan Xiao ◽  
Siyuan Feng ◽  
Xun Wang ◽  
Keren Long ◽  
Yi Luo ◽  
...  

Edible plant-derived exosome-like nanoparticles (EPDELNs) are novel naturally occurring plant ultrastructures that are structurally similar to exosomes. Many EPDELNs have anti-inflammatory properties. MicroRNAs (miRNAs) play a critical role in mediating physiological and pathological processes in animals and plants. Although miRNAs can be selectively encapsulated in extracellular vesicles, little is known about their expression and function in EPDELNs. In this study, we isolated nanovesicles from 11 edible fruits and vegetables and subjected the corresponding EPDELN small RNA libraries to Illumina sequencing. We identified a total of 418 miRNAs—32 to 127 per species—from the 11 EPDELN samples. Target prediction and functional analyses revealed that highly expressed miRNAs were closely associated with the inflammatory response and cancer-related pathways. The 418 miRNAs could be divided into three classes according to their EPDELN distributions: 26 “frequent” miRNAs (FMs), 39 “moderately present” miRNAs (MPMs), and 353 “rare” miRNAs (RMs). FMs were represented by fewer miRNA species than RMs but had a significantly higher cumulative expression level. Taken together, our in vitro results indicate that miRNAs in EPDELNs have the potential to regulate human mRNA.


2019 ◽  
Author(s):  
Lydie Flasse ◽  
Siham Yennek ◽  
Cédric Cortijo ◽  
Irene Seijo Barandiaran ◽  
Marine R-C Kraus ◽  
...  

ABSTRACTCell polarity is essential for the architecture and function of numerous epithelial tissues. Here we show how planar cell polarity (PCP), so far studied principally in flat epithelia, is deployed during the morphogenesis of a tubular organ. Using the mammalian pancreas as a model, we report that components of the core PCP pathway such as the transmembrane protein Van Gogh-like (VANGL), are progressively apically-restricted. VANGL expression becomes asymmetrically localized at the apical surface of ductal cells, revealing a planar polarization of the pancreatic duct. We further show that restricting VANGL to these discrete sites of expression is crucial for epithelial integrity. Expansion of expression on basolateral membranes of the progenitors leads to their death and extrusion from the epithelium, as previously observed for perturbations of apico-basal polarity. Using organoids and in vivo analyses, we show that cell elimination is induced by a decrease of Rock activity via Dishevelled.


Author(s):  
Katie C. Coate ◽  
Jeeyeon Cha ◽  
Shristi Shrestha ◽  
Wenliang Wang ◽  
Luciana Mateus Gonçalves ◽  
...  

Summary/AbstractReports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet β cells. This would require binding and entry of SARS-CoV-2 into host β cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or β cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet β cells through these cell entry proteins.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sage E. Foley ◽  
Christine Tuohy ◽  
Merran Dunford ◽  
Michael J. Grey ◽  
Heidi De Luca ◽  
...  

Abstract Background P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. Results We have identified a “functional core” microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. Conclusion Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation.


Sign in / Sign up

Export Citation Format

Share Document