Chapter 35 Anti-inflammatory drugs: Mechanisms of action

Author(s):  
David S. Newcombe
2021 ◽  
Vol 9 (2) ◽  
pp. 172-178
Author(s):  
Hugo F. Miranda ◽  
Viviana Noriega ◽  
Fernando Sierralta ◽  
Ramón Sotomayor-Zárate ◽  
Juan Carlos Prieto

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in pain whose mechanism of action is the inhibition of cyclooxygenase enzymes (COXs), however, there are evidence of other mechanisms of action, such as the inhibition of substance P, interaction with systems NO, monoaminergic and others. The objective of the present work was to study the participation of a-1 (prazosin) and a-2 (yohimbine) adrenoceptors antagonists in the antinociception of dexketoprofen, the S (+) enantiomer of ketoprofen. The antinociception evaluation was thru the mice orofacial formalin assay. Dexketoprofen (DEX) induced a dose-related antinociception 3.40 times more potent in phase I than in phase II. Prazosin i.p. decreased of the antinociception of DEX, 2.01 times in phase I and 4.02 times in phase II. Administered i.t. reduced the antinociception 5.30 times in phase I and 6.20 times in phase II. Yohimbine i.p. induced a reduction of the ED50 of 3.40 times in phase I and 4.50 times in phase II, after i.t. administration the reduction was 5.30 times in phase I and 6.20 times in phase II. The mechanism of antinociception induced by DEX is mediated by the activation of α-1 and α-2 adrenergic receptors at supraspinal and spinal levels.


2017 ◽  
Vol 95 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Mario I. Ortiz

Experiments using nonsteroidal anti-inflammatory drugs (NSAIDs) alone have produced limited antinociceptive effects in animal models. For this reason, the number of studies involving the administration of NSAIDs along with an adjuvant drug harboring different mechanisms of action has increased enormously. Here, combinations of diclofenac and pyrilamine were used to determine their influence on nociception (formalin test), inflammation (paw inflammation produced by carrageenan), and gastric damage in rodents. Diclofenac, pyrilamine, or combinations of diclofenac and pyrilamine produced antinociceptive and anti-inflammatory effects in the rat. The systemic administration of diclofenac alone and in combination with pyrilamine produced significant gastric damage. Effective dose (ED) values were determined for each individual drug, and isobolograms were prepared. The theoretical ED values for the antinociceptive (systemic, 35.4 mg/kg; local, 343.4 μg/paw) and the anti-inflammatory (37.9 mg/kg) effects differed significantly from the experimental ED values (systemic antinociception, 18.1 mg/kg; local antinociception, 183.3 μg/paw; anti-inflammation, 10.6 mg/kg). Therefore, it was concluded that the interactions between diclofenac and pyrilamine are synergistic. The data suggest that the diclofenac–pyrilamine combinations can interact at the systemic and local peripheral levels, thereby offering a therapeutic alternative for the clinical management of inflammatory pain.


2017 ◽  
pp. 11-15
Author(s):  
V.I. Pyrohova ◽  

The main mechanisms of action of non-steroidal anti-inflammatory drugs, their classification are considered in the article. The indications and aspects of the safe use of non-steroidal anti-inflammatory drugs in gynecological practice from the positions of modern medicine are considered. Key words: nonsteroidal anti-inflammatory drugs, chronic pelvic pain, Diclofenac, Dicloberl.


Sign in / Sign up

Export Citation Format

Share Document