scholarly journals Imaging techniques for assessing hepatic fat content in nonalcoholic fatty liver disease

2008 ◽  
Vol 7 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Ernesto Roldan-Valadez ◽  
Rafael Favila ◽  
Manuel Martínez-López ◽  
Misael Uribe ◽  
Nahum Méndez-Sánchez
2020 ◽  
Vol 318 (6) ◽  
pp. E839-E847
Author(s):  
Martin B. Whyte ◽  
Fariba Shojaee-Moradie ◽  
Sharaf E. Sharaf ◽  
Daniel J. Cuthbertson ◽  
Graham J. Kemp ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is characterized by low-circulating concentration of high-density lipoprotein cholesterol (HDL-C) and raised triacylglycerol (TAG). Exercise reduces hepatic fat content, improves insulin resistance and increases clearance of very-low-density lipoprotein-1 (VLDL1). However, the effect of exercise on TAG and HDL-C metabolism is unknown. We randomized male participants to 16 wk of supervised, moderate-intensity aerobic exercise ( n = 15), or conventional lifestyle advice ( n = 12). Apolipoprotein A-I (apoA-I) and VLDL-TAG and apolipoprotein B (apoB) kinetics were investigated using stable isotopes (1-[13C]-leucine and 1,1,2,3,3-2H5 glycerol) pre- and postintervention. Participants underwent MRI/spectroscopy to assess changes in visceral fat. Results are means ± SD. At baseline, there were no differences between exercise and control groups for age (52.4 ± 7.5 vs. 52.8 ± 10.3 yr), body mass index (BMI: 31.6 ± 3.2 vs. 31.7 ± 3.6 kg/m2), and waist circumference (109.3 ± 7.5 vs. 110.0 ± 13.6 cm). Percentage of liver fat was 23.8 (interquartile range 9.8–32.5%). Exercise reduced body weight (101.3 ± 10.2 to 97.9 ± 12.2 kg; P < 0.001) and hepatic fat content [from 19.6%, interquartile range (IQR) 14.6–36.1% to 8.9% (4.4–17.8%); P = 0.001] and increased the fraction HDL-C concentration (measured following ultracentrifugation) and apoA-I pool size with no change in the control group. However, plasma and VLDL1-TAG concentrations and HDL-apoA-I fractional catabolic rate (FCR) and production rate (PR) did not change significantly with exercise. Both at baseline (all participants) and after exercise there was an inverse correlation between apoA-I pool size and VLDL-TAG and -apoB pool size. The modest effect of exercise on HDL metabolism may be explained by the lack of effect on plasma and VLDL1-TAG.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Cristina Galarregui ◽  
M. Angeles Zulet ◽  
Bertha Araceli Marin-Alejandre ◽  
Irene Cantero ◽  
Nora Goodwin ◽  
...  

AbstractIntroductionDietary components are contributing factors in the development of Nonalcoholic fatty liver disease (NAFLD). The glycaemic index (GI), glycaemic load (GL) and total antioxidant capacity (TAC) have been considered potential dietary tools influencing diet–disease relationships. The aim of this study was to evaluate associations of the dietary GI, GL, TAC and insulin resistance (IR) condition with hepatic fat in NAFLD adults.Material and methods: 112 overweight/obese adults with NAFLD (age: 50.8 ± 9 years old) were included in the trial. Dietary intake was assessed by a validated 137-item food frequency questionnaire (FFQ). Anthropometric, glycemic and lipid profiles, fatty liver quantification by magnetic resonance imaging (MRI) and IR measured by the Homeostatic Model Assessment of IR (HOMA-IR) were assessed at baseline. This study was registered as FLiO: Fatty Liver in Obesity study; NCT03183193.Results: The median of liver fat content by MRI was 6.4 (3.8–10.9) in the recruited population. Participants with higher liver fat content showed significantly increased values of glucose, insulin, HbA1c and HOMA-IR than those with lower liver fat content (p < 0.05). Correlation analyses revealed relevant positive associations of hepatic fat with GI (r = 0.17; p = 0.077) and GL (r = 0.19; p = 0.047). Also, a negative association between liver fat content and TAC (r = -0.22; p = 0.023) was found. Linear regression analyses were used to examine the associations of hepatic fat and dietary quality indicators as well as IR adjusted for potential confounders (sex, age and physical activity). The final models showed that HOMA-IR, GI, GL and TAC were able to explain between 22.4 and 22.8 % (p < 0.001) of the variability of liver fat content.DiscussionThe pathophysiology of NAFLD is thought to be associated with dietary determinants that contribute to metabolic dysregulation such as IR, ectopic liver fat deposition and hepatic damage. In accordance with other authors, we suggest that monitoring GI, GL and TAC may be useful approaches for the dietary treatment of NAFLD since they are related to hepatic fat. Additionally, it is important to highlight the essential role of IR in NAFLD as a key mediator in the development of NAFLD. Certainly, findings of the present study revealed a significant association of hepatic fat accumulation and IR.In summary, GI, GL and TAC are potential markers of diet quality, with an impact on susceptible population at hepatic risk.


2021 ◽  
Vol 22 (14) ◽  
pp. 7348
Author(s):  
Olivia Wegrzyniak ◽  
Maria Rosestedt ◽  
Olof Eriksson

Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dina L. Halegoua-De Marzio ◽  
Jonathan M. Fenkel

Nonalcoholic fatty liver disease (NAFLD) affects up to 30% of adults and is the most common liver disease in Western nations. NAFLD is associated with central adiposity, insulin resistance, type 2 diabetes mellitus, hyperlipidemia, and cardiovascular disease. It encompasses the entire spectrum of fatty liver diseases from simple steatosis to nonalcoholic steatohepatitis (NASH) with lobular/portal inflammation, hepatocellular necrosis, and fibrosis. Of those who develop NASH, 15–25% will progress to end stage liver disease and hepatocellular carcinoma over 10–20 years. Its pathogenesis is complex, and involves a state of lipid accumulation due to increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, and increased incidence of de novo lipogenesis. Plasma aminotransferases and liver ultrasound are helpful in the diagnosis of NAFLD/NASH, but a liver biopsy is often required for definitive diagnosis. Many new plasma biomarkers and imaging techniques are now available that should improve the ability to diagnose NAFLD noninvasively Due to its complexity and extrahepatic complications, treatment of NAFLD requires a multidisciplinary approach with excellent preventative care, management, and treatment. This review will evaluate our current understanding of NAFLD, with a focus on existing therapeutic approaches and potential pharmacological developments.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marinko Marušić ◽  
Matej Paić ◽  
Mia Knobloch ◽  
Ana-Marija Liberati Pršo

Nonalcoholic fatty liver disease is a condition defined by fat accumulation in hepatocytes not promoted by excessive alcohol consumption. It is highly prevalent and is strongly associated with insulin resistance, metabolic syndrome, and diabetes type II. Insulin resistance plays a crucial role in the multifactorial etiopathogenesis of this condition leading to accumulation of free fatty acids in the liver cells, thus causing lipotoxicity, inflammation, and fibrosis. In this review, we will focus on currently known pathogenesis of nonalcoholic fatty liver disease. Numerous investigation strategies are available to establish the diagnosis, from biochemical markers and ultrasound to various molecular and advanced imaging techniques and liver biopsy. Prevention is crucial. However, effective and promising therapies are strongly demanded.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Niraj S. Patel ◽  
Michael R. Peterson ◽  
Grace Y. Lin ◽  
Ariel Feldstein ◽  
Bernd Schnabl ◽  
...  

Background. Ectopic fat deposition in the pancreas and its relationship with hepatic steatosis and insulin resistance have not been compared between patients with nonalcoholic fatty liver disease (NAFLD) and healthy controls.Aim. Using a novel magnetic resonance imaging (MRI) based biomarker, the proton-density-fat-fraction (MRI-PDFF), we compared pancreatic fat content in patients with biopsy-proven NAFLD to healthy controls and determined whether it is associated with insulin resistance and liver fat content.Methods. This nested case-control study was derived from two prospective studies including 43 patients with biopsy-proven NAFLD and 49 healthy controls who underwent biochemical testing and MRI.Results. Compared to healthy controls, patients with NAFLD had significantly higher pancreatic MRI-PDFF (3.6% versus 8.5%,Pvalue <0.001), and these results remained consistent in multivariable-adjusted models including age, sex, body mass index, and diabetes (Pvalue =0.03). We found a strong correlation between hepatic and pancreatic MRI-PDFF (Spearman correlation,P= 0.57,Pvalue <0.001). Participants with increased insulin resistance determined by homeostatic-model-of-insulin-resistance (HOMA-IR) greater than 2.5 had higher pancreatic (7.3% versus 4.5%,Pvalue =0.015) and liver (13.5% versus 4.0%,Pvalue <0.001) MRI-PDFF.Conclusion. Patients with NAFLD have greater pancreatic fat than normal controls. Insulin resistance is associated with liver and pancreatic fat accumulation.


Sign in / Sign up

Export Citation Format

Share Document