scholarly journals Computational Identification of Protein-Protein Interactions in Rice Based on the Predicted Rice Interactome Network

2011 ◽  
Vol 9 (4-5) ◽  
pp. 128-137 ◽  
Author(s):  
Pengcheng Zhu ◽  
Haibin Gu ◽  
Yinming Jiao ◽  
Donglin Huang ◽  
Ming Chen
Author(s):  
Young-Rae Cho ◽  
Aidong Zhang

High-throughput techniques involve large-scale detection of protein-protein interactions. This interaction data set from the genome-scale perspective is structured into an interactome network. Since the interaction evidence represents functional linkage, various graph-theoretic computational approaches have been applied to the interactome networks for functional characterization. However, this data is generally unreliable, and the typical genome-wide interactome networks have a complex connectivity. In this paper, the authors explore systematic analysis of protein interactome networks, and propose a $k$-round signal flow simulation algorithm to measure interaction reliability from connection patterns of the interactome networks. This algorithm quantitatively characterizes functional links between proteins by simulating the propagation of information signals through complex connections. In this regard, the algorithm efficiently estimates the strength of alternative paths for each interaction. The authors also present an algorithm for mining the complex interactome network structure. The algorithm restructures the network by hierarchical ordering of nodes, and this structure re-formatting process reveals hub proteins in the interactome networks. This paper demonstrates that two rounds of simulation accurately scores interaction reliability in terms of ontological correlation and functional consistency. Finally, the authors validate that the selected structural hubs represent functional core proteins.


2021 ◽  
Author(s):  
Rebeca Queiroz Figueiredo ◽  
Tamara Raschka ◽  
Alpha Tom Kodamullil ◽  
Martin Hofmann-Apitius ◽  
Sarah Mubeen ◽  
...  

AbstractIn this work, we attempt to address a key question in the joint analysis of transcriptomic data: can we correlate the patterns we observe in transcriptomic datasets to known molecular interactions and pathway knowledge to broaden our understanding of disease pathophysiology? We present a systematic approach that sheds light on the patterns observed in hundreds of transcriptomic datasets from over sixty indications by using pathways and molecular interactions as a template. Our analysis employs transcriptomic datasets to construct dozens of disease specific co-expression networks, alongside a human interactome network of protein-protein interactions described in the literature. Leveraging the interoperability between these two network templates, we explore patterns both common and particular to these diseases on three different levels. Firstly, at the node-level, we identify the most and least common proteins in these diseases and evaluate their consistency against the interactome as a proxy for their prevalence in the scientific literature. Secondly, we overlay both network templates to analyze common correlations and interactions across diseases at the edge-level. Thirdly, we explore the similarity between patterns observed at the disease level and pathway knowledge to identify pathway signatures associated with specific diseases and indication areas. Finally, we present a case scenario in the context of schizophrenia, where we show how our approach can be used to investigate disease pathophysiology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ratana Thanasomboon ◽  
Saowalak Kalapanulak ◽  
Supatcharee Netrphan ◽  
Treenut Saithong

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Camilo Ruiz ◽  
Marinka Zitnik ◽  
Jure Leskovec

AbstractMost diseases disrupt multiple proteins, and drugs treat such diseases by restoring the functions of the disrupted proteins. How drugs restore these functions, however, is often unknown as a drug’s therapeutic effects are not limited to the proteins that the drug directly targets. Here, we develop the multiscale interactome, a powerful approach to explain disease treatment. We integrate disease-perturbed proteins, drug targets, and biological functions into a multiscale interactome network. We then develop a random walk-based method that captures how drug effects propagate through a hierarchy of biological functions and physical protein-protein interactions. On three key pharmacological tasks, the multiscale interactome predicts drug-disease treatment, identifies proteins and biological functions related to treatment, and predicts genes that alter a treatment’s efficacy and adverse reactions. Our results indicate that physical interactions between proteins alone cannot explain treatment since many drugs treat diseases by affecting the biological functions disrupted by the disease rather than directly targeting disease proteins or their regulators. We provide a general framework for explaining treatment, even when drugs seem unrelated to the diseases they are recommended for.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


Sign in / Sign up

Export Citation Format

Share Document