Effect of vegetation on runoff-sediment yield relationship at different spatial scales in hilly areas of the Loess Plateau, North China

2007 ◽  
Vol 27 (9) ◽  
pp. 3572-3581 ◽  
Author(s):  
Zheng Mingguo ◽  
Cai Qiangguo ◽  
Chen Hao
Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2392
Author(s):  
Liang ◽  
Jiao ◽  
Dang ◽  
Cao

Obtaining practical thresholds for erosive rainfall plays a crucial role in calculating rainfall erosivity and predicting water erosion. Nevertheless, the study of thresholds on subwatershed and watershed scales remains scarce. Given this, we presented the critical rainfall that generated the outflows of subwatersheds and watersheds as the threshold of sediment-generating rainfall. On the basis of the observation of twelve nested topographical units at the Peijiamaogou watershed in the Loess Plateau of China, we fitted regression relationships between rainfall indexes (rainfall amount, maximum 30-min intensity, maximum 60-min intensity, rainfall amount multiply maximum 30-min intensity, and rainfall amount multiply maximum 60-min intensity) and the proportion of cumulative sediment yield to the total sediment yield. We determined the thresholds of sediment-generating rainfall and explored the variabilities of thresholds across different spatial scales. Moreover, the covering area proportion (CAP) with rainfall indexes higher than the thresholds was also employed as thresholds at the subwatershed and watershed scales. The thresholds of CAP for P and I30 were 50.5% and 47.6% at the subwatershed scale, while 31.0% and 30.3% at the watershed scale. The thresholds of P and I30 at the subwatershed scale were higher than those of hillslope scale, while the threshold of I30 at the watershed scale was smaller compared to the other scales. In general, I30 was viewed as the best threshold among single rainfall indexes across different spatial scales, while P was not recommended as a practical threshold. This study can improve the prediction accuracy of water erosion across different spatial scales and develop the spatial scale effect of sediment yield in the loess hilly areas.


2013 ◽  
Vol 28 (4) ◽  
pp. 448-457 ◽  
Author(s):  
Jia-hong LIU ◽  
Guang-qian WANG ◽  
Hai-hong LI ◽  
Jia-guo GONG ◽  
Jing-yi HAN

2012 ◽  
Vol 518-523 ◽  
pp. 4504-4509
Author(s):  
Lu Zhang ◽  
Yuee Chen ◽  
Qing Wu

It was important to explore the law of water and sediment reduction of loess slope in different grass coverage for carrying out the grass construction and controlling slope erosion in the Loess Plateau. Using the tests of outside artificially runoff erosion simulation, in the condition of 5L/min of the scouring flows, we conducted a pilot study of sediment yield, erosion rates, and runoff sediment concentration in three different slope conditions of 15°, 20°, 25° and three grass coverage conditions of bare slope, 30%~40% and 70%~80%. The results showed that: the grass coverage has significantly influences on sediment yield, erosion rate and runoff sediment concentration of loess slope. Sediment yield of loess slope with grass coverage of 70 ~ 80% is less than 10% of that of bare slope. Under the same conditions of gradient and grass coverage, the sediment yield and runoff sediment concentration had a direct proportion with the scouring flow. Under the same conditions of gradient and scouring flows, the erosion rate and runoff sediment yield of loess slope are basically the same. Grass has a significant role in enhancing resistance to corrosion of soil and reducing erosion of loess slope.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Fabing Xie ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian ◽  
Peng Gao ◽  
...  

Soil erosion has become the dominant environmental issue endangering sustainable development in agriculture and the ecosystem on the Loess Plateau. Determination of watershed soil erosion rates and sediment yields is essential for reasonable utilization of water resources and soil loss control. In this study, we employed unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry to determine the sediment yields in 24 dam-controlled watersheds in the Pisha sandstone region of the northern Loess Plateau. High differences in total sediment were trapped before the check dams due to their running periods and sediment yields. The estimated specific sediment yield ranged from 34.32 t/(ha∙a) to 123.80 t/(ha∙a) with an average of 63.55 t/(ha∙a), which indicated that the Pisha sandstone region had an intense soil erosion rate. Furthermore, the modified Sediment Distributed Delivery (SEDD) model was applied to identify the erosion-prone areas in the watersheds, and the sediment retained in the check dams were used for model calibration. The performance of the model was acceptable, and the modeling results indicated that the steep Pisha sandstone was the major sediment source for the watersheds, accounting for approximately 87.37% of the sediment yield. Catchment area, erosive precipitation, and badland proportion were the key factors for sediment yield in the dam-controlled watersheds of the Pisha sandstone region, according to multiple regression analyses. These findings indicated that the modified SEDD model is very efficient in identifying spatial heterogeneities of sediment yield in the watershed but requires comprehensive calibration and validation with long-term observations. The Pisha sandstone region is still the key area of soil erosion control in the Loess Plateau, which needs more attention for soil and water conservation due to high sediment yield.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Peng Guo ◽  
Jiqiang Lyu ◽  
Weining Yuan ◽  
Xiawan Zhou ◽  
Shuhong Mo ◽  
...  

This study examined the Chabagou River watershed in the gully region of the Loess Plateau in China’s Shaanxi Province, and was based on measured precipitation and runoff data in the basin over a 52-year period (1959–2010), land-use types, normalized difference vegetation index (NDVI), and other data. Statistical models and distributed hydrological models were used to explore the influences of climate change and human activity on the hydrological response and on the temporal and spatial evolution of the basin. It was found that precipitation and runoff in the gully region presented a downward trend during the 52-year period. Since the 1970s, the hydrological response to human activities has become the main source of regional hydrological evolution. Evapotranspiration from the large silt dam in the study area has increased. The depth of soil water decreased at first, then it increased by amount that exceeded the evaporation increase observed in the second and third change periods. The water and soil conservation measures had a beneficial effect on the ecology of the watershed. These results provide a reference for water resource management and soil and water conservation in the study area.


Sign in / Sign up

Export Citation Format

Share Document