Effect of thermal reduction temperature on the electrochemical performance of reduced graphene oxide/MnO2 composites

2015 ◽  
Vol 30 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Ling-yun Wang ◽  
Yong Wang ◽  
Hai-xia Zhang ◽  
Xiao-min Wang
2016 ◽  
Vol 361 ◽  
pp. 213-220 ◽  
Author(s):  
Alexandr V. Dolbin ◽  
Maria V. Khlistyuck ◽  
Valentin B. Esel'son ◽  
Viktor G. Gavrilko ◽  
Nikolay A. Vinnikov ◽  
...  

Author(s):  
Denis Yu. Kornilov

Introduction. An incomplete list of graphene properties includes high electric conductivity, thermal conductivity, strength, large surface area, high light transmittance. Graphene is a very promising material from the point of view of its application in micro- and nanoelectronics. In addition, graphene advantage is a possibility of its obtaining by various ways. It allows creating materials with desired physicochemical properties by using appropriate technological methods. Objective. The investigation of a thermal reduction temperature influence on physicochemical properties of graphene oxide (GO) films. Materials and methods. In the present work, GO films are obtained on a slide surface by its immersing and removing from a graphene oxide water dispersion (dip coating). Obtained samples are studied by methods of scanning electron microscopy, Raman spectroscopy, and elemental CHN analysis. A sheet resistance is measured by a four-point probes method. Results. A content difference of elements (C, H, N) in studied samples, and both graphene structure defectiveness and sheet resistance decrease, are found to be proportional to a reduction temperature increase. A GO films thickness decrease during a heat treatment is also observed, which is presumably associated with a functional GO groups loss while thermal reduction. Conclusion. Research results demonstrate a possibility of a carbon films with desired physicochemical properties obtaining from a reduced graphene oxide (RGO), which can be used in thin-film technologies. Presented materials can also be useful in issues related to GO and RGO obtaining and applying.


2016 ◽  
Vol 4 (40) ◽  
pp. 15302-15308 ◽  
Author(s):  
Zhigao Luo ◽  
Jiang Zhou ◽  
Lirong Wang ◽  
Guozhao Fang ◽  
Anqiang Pan ◽  
...  

We report the synthesis of a novel 2D hybrid nanosheet constructed by few layered MoSe2 grown on reduced graphene oxide (rGO), which exhibits excellent electrochemical performance as anodes for lithium ion batteries.


RSC Advances ◽  
2013 ◽  
Vol 3 (29) ◽  
pp. 11807 ◽  
Author(s):  
Changdong Gu ◽  
Heng Zhang ◽  
Xiuli Wang ◽  
Jiangping Tu

2017 ◽  
Vol 193 ◽  
pp. 216-219 ◽  
Author(s):  
Zifeng Wang ◽  
Chengwei Gao ◽  
Yushan Liu ◽  
Dan Li ◽  
Weihua Chen ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22551-22560 ◽  
Author(s):  
Rahul S. Diggikar ◽  
Dattatray J. Late ◽  
Bharat B. Kale

The unique morphologies of reduced graphene oxide (RGO) and RGO–PANI nanofibers (NF) composites have been demonstrated. The enhanced electrochemical performance was observed for honeycomb like RGO–PANI NFs composites.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 70012-70017 ◽  
Author(s):  
A. Alhadhrami ◽  
S. Salgado ◽  
V. Maheshwari

Inter-layer spacing in reduced graphene-oxide membranes which modulates their ion-diffusion electrical and electrochemical characteristics is controlled by temperature of thermal reduction.


Sign in / Sign up

Export Citation Format

Share Document