scholarly journals Combinatorial latency reversal activity of inhibitor of apoptosis antagonists with mechanistically distinct classes of HIV latency reversal agents

2019 ◽  
Vol 5 ◽  
pp. 47-48
Author(s):  
Shane D. Falcinelli ◽  
David M. Irlbeck ◽  
Anne-Marie Turner ◽  
Frances Potjewyd ◽  
Lindsey I. James ◽  
...  
2021 ◽  
Vol 213 ◽  
pp. 113213
Author(s):  
Juliana Romano Lopes ◽  
Diego Eidy Chiba ◽  
Jean Leandro Dos Santos

2021 ◽  
Author(s):  
Laurent Hany ◽  
Marc-Olivier Turmel ◽  
Corinne Barat ◽  
Michel Ouellet ◽  
Michel J. Tremblay

While combination antiretroviral therapy maintains undetectable viremia in People Living With HIV (PLWH), a life-long treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long lived HIV-1 latently infected cells reversing to a viral productive status. Reversing latency and elimination of these cells by the so-called shock and kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4 + T cells. However, LRAs impact on de novo infection or HIV-1 production in productively infected macrophages remain elusive. Nontoxic doses of bryostatin-1, JQ1 and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effect rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance neither HIV-1 production nor gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4 + T cells are responding differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. Importance HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing a gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo . Yet, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging anti-replicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists which is specific to myeloid cells. This study provides new insights on HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1 targeted cells.


2019 ◽  
Vol 15 (8) ◽  
pp. e1007991 ◽  
Author(s):  
Judith Grau-Expósito ◽  
Laura Luque-Ballesteros ◽  
Jordi Navarro ◽  
Adrian Curran ◽  
Joaquin Burgos ◽  
...  

2015 ◽  
Vol 90 (3) ◽  
pp. 1673-1676 ◽  
Author(s):  
John K. Bui ◽  
John W. Mellors ◽  
Anthony R. Cillo

Quantifying induced virion production from single proviruses is important for assessing the effects of HIV-1 latency reversal agents. Limiting dilutionex vivocultures of resting CD4+T cells from 14 HIV-positive volunteers revealed that virion production after T-cell activation from individual proviruses varies by 10,000-fold to 100,000-fold. High-producing proviruses were associated with increases in cell-associated HIV-1 DNA levels, suggesting that reactivated proviruses proliferate. Single-cell analyses are needed to investigate differences in proviral expansion and virus production following latency reversal.


2018 ◽  
Vol 69 (1) ◽  
pp. 421-436 ◽  
Author(s):  
Adam M. Spivak ◽  
Vicente Planelles

2020 ◽  
Author(s):  
Juliana Romano Lopes ◽  
Igor Prokopczyk ◽  
Jean Leandro Dos Santos

2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Caroline Pereira Bittencourt Passaes ◽  
Timothée Bruel ◽  
Jérémie Decalf ◽  
Annie David ◽  
Mathieu Angin ◽  
...  

ABSTRACT The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals. Results from ultrasensitive p24 assays were compared to those from conventional viral RNA reverse transcription-quantitative PCR (RT-qPCR)-based assays and from outgrowth assay readout by flow cytometry. Using serial dilutions and flow-based single-cell sorting, we show that viral proteins produced by a single infected cell can be detected by the ultrasensitive p24 assay. This unique sensitivity allowed the early (as soon as day 1 in 43% of cases) and more efficient detection and quantification of p24 in phytohemagglutinin-L (PHA)-stimulated CD4+ T cells from individuals under effective cART. When seven different classes of latency reversal agents (LRA) in resting CD4+ T cells from HIV-infected individuals were tested, the ultrasensitive p24 assay revealed differences in the extent of HIV reactivation. Of note, HIV RNA production was infrequently accompanied by p24 protein production (19%). Among the drugs tested, prostratin showed a superior capacity in inducing viral protein production. In summary, the ultrasensitive p24 assay allows the detection and quantification of p24 produced by single infected CD4+ T cells and provides a unique tool to assess early reactivation of infectious virus from reservoirs in HIV-infected individuals. IMPORTANCE The persistence of HIV reservoirs in infected individuals under effective antiretroviral treatment represents a major obstacle toward cure. Different methods to estimate HIV reservoirs exist, but there is currently no optimal assay to measure HIV reservoirs in HIV eradication interventions. In the present study, we report an ultrasensitive digital ELISA platform for quantification of the HIV-1 protein p24. This method was employed to assess the early reactivation of infectious virus from reservoirs in HIV-1-infected individuals. We found that viral proteins produced by a single infected cell can be detected by an ultrasensitive p24 assay. This unprecedented resolution showed major advantages in comparison to other techniques currently used to assess viral replication in reactivation studies. In addition, such a highly sensitive assay allows discrimination of drug-induced reactivation of productive HIV based on protein expression. The present study heralds new opportunities to evaluate the HIV reservoir and the efficacy of drugs used to target it.


Sign in / Sign up

Export Citation Format

Share Document