scholarly journals HIVGKO: A Tool to Assess HIV-1 Latency Reversal Agents in Human Primary CD4+ T Cells

BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (20) ◽  
Author(s):  
Emilie Battivelli ◽  
Eric Verdin
2020 ◽  
Vol 8 (10) ◽  
pp. 1505
Author(s):  
Antonio Victor Campos Coelho ◽  
Ronald Rodrigues de Moura ◽  
Sergio Crovella

The human immunodeficiency virus (HIV-1) causes a progressive depletion of CD4+ T cells, hampering immune function. Current experimental strategies to fight the virus focus on the reactivation of latent HIV-1 in the viral reservoir to make the virus detectable by the immune system, by searching for latency reversal agents (LRAs). We hypothesize that if common molecular pathways elicited by the presence of LRAs are known, perhaps new, more efficient, “shock-and-kill” strategies can be found. Thus, the objective of the present study is to re-evaluate RNA-Seq assays to find differentially expressed genes (DEGs) during latency reversal via transcriptome analysis. We selected six studies (45 samples altogether: 16 negative controls and 29 LRA-treated CD4+ T cells) and 11 LRA strategies through a systematic search in Gene Expression Omnibus (GEO) and PubMed databases. The raw reads were trimmed, counted, and normalized. Next, we detected consistent DEGs in these independent experiments. AZD5582, romidepsin, and suberanilohydroxamic acid (SAHA) were the LRAs that modulated most genes. We detected 948 DEGs shared by those three LRAs. Gene ontology analysis and cross-referencing with other sources of the literature showed enrichment of cell activation, differentiation and signaling, especially mitogen-activated protein kinase (MAPK) and Rho-GTPases pathways.


2021 ◽  
Author(s):  
Laurent Hany ◽  
Marc-Olivier Turmel ◽  
Corinne Barat ◽  
Michel Ouellet ◽  
Michel J. Tremblay

While combination antiretroviral therapy maintains undetectable viremia in People Living With HIV (PLWH), a life-long treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long lived HIV-1 latently infected cells reversing to a viral productive status. Reversing latency and elimination of these cells by the so-called shock and kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4 + T cells. However, LRAs impact on de novo infection or HIV-1 production in productively infected macrophages remain elusive. Nontoxic doses of bryostatin-1, JQ1 and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effect rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance neither HIV-1 production nor gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4 + T cells are responding differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. Importance HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing a gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo . Yet, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging anti-replicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists which is specific to myeloid cells. This study provides new insights on HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1 targeted cells.


2019 ◽  
Author(s):  
Mateusz Stoszko ◽  
Abdullah M.S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

AbstractA leading pharmacological strategy towards HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with Latency Reversal Agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs we used fungal secondary metabolites (extrolites) as a source of bio-active molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the P-TEFb inhibitory 7SK snRNP complex to be significantly reduced upon GTX treatment of independent donor CD4+T cells. GTX disrupted 7SK snRNP, releasing active P-TEFb, which then phosphorylated RNA Pol II CTD, inducing HIV transcription. Our data highlight the power of combining a medium throughput bioassay, mycology and orthogonal mass spectrometry to identify novel potentially therapeutic compounds.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Caroline Pereira Bittencourt Passaes ◽  
Timothée Bruel ◽  
Jérémie Decalf ◽  
Annie David ◽  
Mathieu Angin ◽  
...  

ABSTRACT The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals. Results from ultrasensitive p24 assays were compared to those from conventional viral RNA reverse transcription-quantitative PCR (RT-qPCR)-based assays and from outgrowth assay readout by flow cytometry. Using serial dilutions and flow-based single-cell sorting, we show that viral proteins produced by a single infected cell can be detected by the ultrasensitive p24 assay. This unique sensitivity allowed the early (as soon as day 1 in 43% of cases) and more efficient detection and quantification of p24 in phytohemagglutinin-L (PHA)-stimulated CD4+ T cells from individuals under effective cART. When seven different classes of latency reversal agents (LRA) in resting CD4+ T cells from HIV-infected individuals were tested, the ultrasensitive p24 assay revealed differences in the extent of HIV reactivation. Of note, HIV RNA production was infrequently accompanied by p24 protein production (19%). Among the drugs tested, prostratin showed a superior capacity in inducing viral protein production. In summary, the ultrasensitive p24 assay allows the detection and quantification of p24 produced by single infected CD4+ T cells and provides a unique tool to assess early reactivation of infectious virus from reservoirs in HIV-infected individuals. IMPORTANCE The persistence of HIV reservoirs in infected individuals under effective antiretroviral treatment represents a major obstacle toward cure. Different methods to estimate HIV reservoirs exist, but there is currently no optimal assay to measure HIV reservoirs in HIV eradication interventions. In the present study, we report an ultrasensitive digital ELISA platform for quantification of the HIV-1 protein p24. This method was employed to assess the early reactivation of infectious virus from reservoirs in HIV-1-infected individuals. We found that viral proteins produced by a single infected cell can be detected by an ultrasensitive p24 assay. This unprecedented resolution showed major advantages in comparison to other techniques currently used to assess viral replication in reactivation studies. In addition, such a highly sensitive assay allows discrimination of drug-induced reactivation of productive HIV based on protein expression. The present study heralds new opportunities to evaluate the HIV reservoir and the efficacy of drugs used to target it.


Sign in / Sign up

Export Citation Format

Share Document