Hybrid Dehydrations: Water Deprivation

2021 ◽  
pp. 139-163
Keyword(s):  
2015 ◽  
Author(s):  
Phillip Yeoh ◽  
Pierre Bouloux ◽  
Shern Chew ◽  
Bernard Khoo ◽  
Paul Carroll ◽  
...  

1958 ◽  
Vol 4 ◽  
pp. 63 ◽  
Author(s):  
FRANCES L. CLAYTON
Keyword(s):  

Author(s):  
Natalia Mikosch ◽  
Markus Berger ◽  
Elena Huber ◽  
Matthias Finkbeiner

Abstract Purpose The water footprint (WF) method is widely applied to quantify water use along the life cycle of products and organizations and to evaluate the resulting impacts on human health. This study analyzes the cause-effect chains for the human health damage related to the water use on a local scale in the Province Punjab of Pakistan, evaluates their consistency with existing WF models, and provides recommendations for future model development. Method Locally occurring cause-effect chains are analyzed based on site observations in Punjab and a literature review. Then, existing WF models are compared to the findings in the study area including their comprehensiveness (covered cause-effect chains), relevance (contribution of the modeled cause-effect chain to the total health damage), and representativeness (correspondence with the local cause-effect chain). Finally, recommendations for the development of new characterization models describing the local cause-effect chains are provided. Results and discussion The cause-effect chains for the agricultural water deprivation include malnutrition due to reduced food availability and income loss as well as diseases resulting from the use of wastewater for irrigation, out of which only the first one is addressed by existing WF models. The cause-effect chain for the infectious diseases due to domestic water deprivation is associated primarily with the absence of water supply systems, while the linkage to the water consumption of a product system was not identified. The cause-effect chains related to the water pollution include the exposure via agricultural products, fish, and drinking water, all of which are reflected in existing impact assessment models. Including the groundwater compartment may increase the relevance of the model for the study area. Conclusions Most cause-effect chains identified on the local scale are consistent with existing WF models. Modeling currently missing cause-effect chains for the impacts related to the income loss and wastewater usage for irrigation can enhance the assessment of the human health damage in water footprinting.


2007 ◽  
Vol 20 (1) ◽  
pp. 17-28 ◽  
Author(s):  
James P. Hogan ◽  
J. Carol Petherick ◽  
Clive J. C. Phillips

Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin–angiotensin–aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.


2013 ◽  
Vol 114 (12) ◽  
pp. 1689-1696 ◽  
Author(s):  
Walter W. Holbein ◽  
Glenn M. Toney

Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats ( n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls ( P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller ( P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.


2002 ◽  
Vol 68 (9) ◽  
pp. 4604-4612 ◽  
Author(s):  
Catherine A. Axtell ◽  
Gwyn A. Beattie

ABSTRACT We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water deprivation caused by the presence of NaCl, Na2SO4, KCl, or polyethylene glycol (molecular weight, 8000). The fusion was induced to a detectable level by NaCl concentrations of as low as 10 mM in all three bacterial species. Water deprivation induced proU-gfp expression in both planktonic and surface-associated cells; however, it induced a higher level of expression in the surface-associated cells. Following the introduction of P. agglomerans biosensor cells onto bean leaves, the cells detected a significant decrease in water availability within only 5 min. After 30 min, the populations were exposed, on average, to a water potential equivalent to that imposed by approximately 55 mM NaCl. These results demonstrate the effectiveness of a proU-gfp-based biosensor for evaluating water availability on leaves. Furthermore, the inducibility of proU-gfp in multiple bacterial species illustrates the potential for tailoring proU-gfp-based biosensors to specific habitats.


Sign in / Sign up

Export Citation Format

Share Document