Human Nervous System Development: Embryonic and Early Fetal Events

2021 ◽  
pp. 81-87
Author(s):  
Marc Del Bigio
2019 ◽  
Vol 41 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Elisa Borsani ◽  
Anna Maria Della Vedova ◽  
Rita Rezzani ◽  
Luigi Fabrizio Rodella ◽  
Carlo Cristini

2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2021 ◽  
Vol 81 (3) ◽  
pp. 229-230
Author(s):  
Frank Bradke ◽  
Antonina Roll‐Mecak

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Giez ◽  
Alexander Klimovich ◽  
Thomas C. G. Bosch

Abstract Animals have evolved within the framework of microbes and are constantly exposed to diverse microbiota. Microbes colonize most, if not all, animal epithelia and influence the activity of many organs, including the nervous system. Therefore, any consideration on nervous system development and function in the absence of the recognition of microbes will be incomplete. Here, we review the current knowledge on the nervous systems of Hydra and its role in the host–microbiome communication. We show that recent advances in molecular and imaging methods are allowing a comprehensive understanding of the capacity of such a seemingly simple nervous system in the context of the metaorganism. We propose that the development, function and evolution of neural circuits must be considered in the context of host–microbe interactions and present Hydra as a strategic model system with great basic and translational relevance for neuroscience.


2021 ◽  
Vol 22 (11) ◽  
pp. 5793
Author(s):  
Brianna M. Quinville ◽  
Natalie M. Deschenes ◽  
Alex E. Ryckman ◽  
Jagdeep S. Walia

Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.


Sign in / Sign up

Export Citation Format

Share Document