MULTIVARIATE COMPOSITE COPULAS

2021 ◽  
pp. 1-40
Author(s):  
Jiehua Xie ◽  
Jun Fang ◽  
Jingping Yang ◽  
Lan Bu

Abstract In this paper, we present a method for generating a copula by composing two arbitrary n-dimensional copulas via a vector of bivariate functions, where the resulting copula is named as the multivariate composite copula. A necessary and sufficient condition on the vector guaranteeing the composite function to be a copula is given, and a general approach to construct the vector satisfying this necessary and sufficient condition via bivariate copulas is provided. The multivariate composite copula proposes a new framework for the construction of flexible multivariate copula from existing ones, and it also includes some known classes of copulas. It is shown that the multivariate composite copula has a clear probability structure, and it satisfies the characteristic of uniform convergence as well as the reproduction property for its component copulas. Some properties of multivariate composite copulas are discussed. Finally, numerical illustrations and an empirical example on financial data are provided to show the advantages of the multivariate composite copula, especially in capturing the tail dependence.

2018 ◽  
Vol 55 (1) ◽  
pp. 54-68
Author(s):  
Marco Oesting

Abstract While max-stable processes are typically written as pointwise maxima over an infinite number of stochastic processes, in this paper, we consider a family of representations based on ℓp-norms. This family includes both the construction of the Reich–Shaby model and the classical spectral representation by de Haan (1984) as special cases. As the representation of a max-stable process is not unique, we present formulae to switch between different equivalent representations. We further provide a necessary and sufficient condition for the existence of an ℓp-norm-based representation in terms of the stable tail dependence function of a max-stable process. Finally, we discuss several properties of the represented processes such as ergodicity or mixing.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document