scholarly journals Space–time singularities

2003 ◽  
Vol 18 (26) ◽  
pp. 4797-4809 ◽  
Author(s):  
NORMA G. SANCHEZ

Key issues and essential features of classical and quantum strings in gravitational plane waves, shock waves and space–time singularities are synthetically understood. This includes the string mass and mode number excitations, energy–momentum tensor, scattering amplitudes, vacuum polarization and wave-string polarization effect. The role of the real pole singularities characteristic of the tree level string spectrum (real mass resonances) and that of the space–time singularities is clearly exhibited. This throws light on the issue of singularities in string theory which can be thus classified and fully physically characterized in two different sets: strong singularities (poles of order ≥ 2, and black holes) where the string motion is collective and nonoscillating in time, outgoing states and scattering sector do not appear, the string does not cross the singularities; and weak singularities (poles of order < 2, (Dirac δ belongs to this class) and conic/orbifold singularities) where the whole string motion is oscillatory in time, outgoing and scattering states exist, and the string crosses the singularities. Common features of strings in singular wave backgrounds and in inflationary backgrounds are explicitly exhibited. The string dynamics and the scattering/excitation through the singularities (whatever their kind: strong or weak) is fully physically consistent and meaningful.


2020 ◽  
Vol 35 (14) ◽  
pp. 2030007 ◽  
Author(s):  
Yen Chin Ong

The singularity theorems of Hawking and Penrose tell us that singularities are common place in general relativity. Singularities not only occur at the beginning of the Universe at the Big Bang, but also in complete gravitational collapses that result in the formation of black holes. If singularities — except the one at the Big Bang — ever become “naked,” i.e. not shrouded by black hole horizons, then it is expected that problems would arise and render general relativity indeterministic. For this reason, Penrose proposed the cosmic censorship conjecture, which states that singularities should never be naked. Various counterexamples to the conjecture have since been discovered, but it is still not clear under which kind of physical processes one can expect violation of the conjecture. In this short review, I briefly examine some progresses in space–time singularities and cosmic censorship conjecture. In particular, I shall discuss why we should still care about the conjecture, and whether we should be worried about some of the counterexamples. This is not meant to be a comprehensive review, but rather to give an introduction to the subject, which has recently seen an increase of interest.


Author(s):  
Maciej Gos

The general theory of relativity and field theory of matter generate an interesting ontology of space-time and, generally, of nature. It is a monistic, anti-atomistic and geometrized ontology — in which the substance is the metric field — to which all physical events are reducible. Such ontology refers to the Cartesian definition of corporeality and to Plato's ontology of nature presented in the Timaeus. This ontology provides a solution to the dispute between Clark and Leibniz on the issue of the ontological independence of space-time from distribution of events. However, mathematical models of space-time in physics do not solve the problem of the difference between time and space dimensions (invariance of equations with regard to the inversion of time arrow). Recent research on space-time singularities and asymmetrical in time quantum theory of gravitation will perhaps allow for the solution of this problem based on the structure of space-time and not merely on thermodynamics.


2004 ◽  
Vol 2004 (07) ◽  
pp. 068-068 ◽  
Author(s):  
M Blau ◽  
M Borunda ◽  
M O'Loughlin ◽  
G Papadpoulos

1992 ◽  
Vol 33 (8) ◽  
pp. 2842-2848 ◽  
Author(s):  
János Kánnár ◽  
István Rácz

Sign in / Sign up

Export Citation Format

Share Document