The Formation and Evolution of Planetary Systems: placing our Solar System in context

2009 ◽  
pp. 14-30 ◽  
Author(s):  
Jeroen Bouwman ◽  
Michael R. Meyer ◽  
Jinyoung Serena Kim ◽  
Murray D. Silverstone ◽  
John M. Carpenter ◽  
...  
2012 ◽  
Vol 8 (S293) ◽  
pp. 77-83
Author(s):  
Martin Dominik

AbstractStudying the amazingly diverse planet zoo provides us with unprecedented opportunities for understanding planet Earth and ultimately ourselves. An assessment of a planet's “habitability” reflects our Earth-centric prejudice and can serve to prioritise targets to actually search for signatures of life similar to ours. The probability for life beyond Earth to exist however remains unknown, and studies on habitability or statistics of planetary systems do not change this. But we can leave speculation behind, and embark on a journey of exploration. A sample of detected cosmic habitats would provide us with insight on the conditions for life to emerge, develop, and sustain, but disentangling the biota fraction from the duration of the biotic era would depend particularly on our knowledge about the dynamics of planetary systems. Apart from the fact that planets usually do not come alone, we also must not forget that the minor bodies in the Solar system vastly outnumber the planets. A focus on just what we might consider “habitable” planets is too narrow to understand their formation and evolution. While uniqueness prevents understanding, we need to investigate the context and embrace diversity. A comprehensive picture of planet populations can only arise by exploiting a variety of different detection techniques, where not only Kepler but also gravitational microlensing can now enter hitherto uncharted territory below the mass or size of the Earth. There is actually no shortage of planets, the Milky Way alone may host hundreds of billions, and so far we have found only about 1000.


2006 ◽  
Vol 118 (850) ◽  
pp. 1690-1710 ◽  
Author(s):  
Michael R. Meyer ◽  
Lynne A. Hillenbrand ◽  
Dana Backman ◽  
Steve Beckwith ◽  
Jeroen Bouwman ◽  
...  

Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


Author(s):  
Ravit Helled ◽  
Jonathan J. Fortney

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2021 ◽  
Vol 03 (01) ◽  
pp. 85-87
Author(s):  
Türkanə Mirzəli qızı Əliyeva ◽  
◽  
Vəfa Əjdər qızı Qafarova ◽  

The article provides extensive information on the formation, evolution and structure of the solar system. It also discusses the planets of the solar system and the dwarf planets. Its noted that the Kuiper objects are the celestial bodies which belongs to the solar system. NASA's New Horizons spacecraft is currently helps studying four objects in the Kuiper belt. There is also talked about TTauri type stars. The article discusses the future transformation of the Sun from a Red Giant to a White Dwarf. Key words: Kuiper Belt, T Tauri Star, Dwarf Planets, Planet X


2008 ◽  
Vol 677 (1) ◽  
pp. 630-656 ◽  
Author(s):  
Lynne A. Hillenbrand ◽  
John M. Carpenter ◽  
Jinyoung Serena Kim ◽  
Michael R. Meyer ◽  
Dana E. Backman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document