Bernoulli numbers and the Euler–MacLaurin summation formula

2010 ◽  
pp. 495-519
Author(s):  
Hugh L. Montgomery ◽  
Robert C. Vaughan
2014 ◽  
Vol 98 (543) ◽  
pp. 459-474 ◽  
Author(s):  
Nick Lord

The problem of finding a closed-form evaluation ofbaffled the pioneers of calculus such as Leibniz and James Bernoulli and, following the latter’s promulgation of the problem, it became known as the Basel problem after his home town (which was also Euler’s birthplace). Euler’s early sensational success in solving the Basel problem by identifyingis extremely well-documented. In this paper, we give the full details of his subsequent derivation of the general formulawhere (Bn) is a sequence of ‘strange constants’. Euler’s polished account of his discovery, in which he popularised the designation of the strange constants as ‘Bernoulli numbers’, appears in Chapter 5 of Volume 2 of his great textbookInstitutiones calculi differentialis[1; E212]: see [2] for an online English translation. Here, we will focus on his initial step-by-step account which appeared in his paper with Eneström number E130, written c1739, carrying the rather nondescript titleDe seriebus quibusdam considerationes, ‘Considerations about certain series’. (For convenience, we will just use ‘Eneström numbers’ when referencing Euler’s work: all are readily available on-line at [1].) Euler’s proof is notable for its early, sophisticated and incisive use of generating functions and for his brilliant insight that the sequence (Bn) occurring in the coefficients of the general ζ(2n) formula (1) also occurs in the Euler-Maclaurin summation formula and in the Maclaurin expansion of. By retracing Euler’s original path, we shall not only be able to admire the master in full creative flow, but also appreciate the role played by recurrence relations such aswhich, as our ample list of references (which will be reviewed later) suggests, have been rediscovered over and over again in the literature. Moreover, our historical approach makes it clear that, while deriving (2) is relatively straightforward (and may be used to calculate ζ(2n) recursively as a rational multiple of ζ2n), it is establishing the connection between ζ(2n) and the Bernoulli numbers that was for Euler the more difficult step. Even today, this step presents pedagogical challenges depending on one’s starting definition for the Bernoulli numbers and what identities satisfied by them one is prepared to assume or derive.


2019 ◽  
pp. 657-666
Author(s):  
Hans-Peter Eckle

Chapter 19 introduces the mathematical techniques required to extract analytic infor- mation from the Bethe ansatz equations for a Heisenberg quantum spin chain of finite length. It discusses how the Bernoulli numbers are needed as a prerequisite for the Euler– Maclaurin summation formula, which allows to transform finite sums into integrals plus, in a systematic way, corrections taking into account the finite size of the system. Applying this mathematical technique to the Bethe ansatz equations results in linear integral equations of the Wiener–Hopf type for the solution of which an elaborate mathematical technique exists, the Wiener–Hopf technique.


2021 ◽  
pp. 2150038
Author(s):  
Driss Essouabri ◽  
Kohji Matsumoto

We study rather general multiple zeta functions whose denominators are given by polynomials. The main aim is to prove explicit formulas for the values of those multiple zeta functions at non-positive integer points. We first treat the case when the polynomials are power sums, and observe that some “trivial zeros” exist. We also prove that special values are sometimes transcendental. Then we proceed to the general case, and show an explicit expression of special values at non-positive integer points which involves certain period integrals. We give examples of transcendental values of those special values or period integrals. We also mention certain relations among Bernoulli numbers which can be deduced from our explicit formulas. Our proof of explicit formulas are based on the Euler–Maclaurin summation formula, Mahler’s theorem, and a Raabe-type lemma due to Friedman and Pereira.


2005 ◽  
Vol 42 (1) ◽  
pp. 21-35 ◽  
Author(s):  
J. Weijian ◽  
G. Mingzhe ◽  
G. Xuemei

A weighted Hardy-Hilbert’s inequality with the parameter λ of form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$ \end{document} is established by introducing two parameters s and λ, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$ \end{document} is the beta function. B *(λ) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

2021 ◽  
Vol 9 (1) ◽  
pp. 22-30
Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Ömer Duran

Abstract In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0, ∑ k = 0 n B k k ! H ( n . k , α ) = α H ( n + 1 , 1 , α ) - H ( n , 1 , α ) , \sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} , and for n > r ≥ 0, ∑ k = r n - 1 ( - 1 ) k s ( k , r ) r ! α k k ! H n - k ( α ) = ( - 1 ) r H ( n , r , α ) , \sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s (n, r).


Sign in / Sign up

Export Citation Format

Share Document