Entropy Production and Resource Consumption in Life-Cycle Assessments

Author(s):  
Stefan Gößling-Reisemann
Food Policy ◽  
2016 ◽  
Vol 59 ◽  
pp. 139-151 ◽  
Author(s):  
Benjamin Goldstein ◽  
Steffen Foss Hansen ◽  
Mickey Gjerris ◽  
Alexis Laurent ◽  
Morten Birkved

2016 ◽  
Vol 847 ◽  
pp. 366-373
Author(s):  
Chun Zhi Zhao ◽  
Meng Chi Huang ◽  
Yi Liu ◽  
Li Ping Ma

Plastic pipe is a kind of new pipeline material and its output has been increasing in recent years. It is still mainly used for water supply and drainage of buildings and municipal utility industry as well as for safe drinking in rural areas, about half of all plastic pipelines are used for buildings, and the proportion of these pipelines used in other fields is also increasing. Plastic pipeline system's influence on the environment within its life cycle is the focus of researches in recent years. Based on life cycle assessment (LCA), this paper assesses the common water supply and drainage pipelines (PPR, PE and PVC-U) for buildings for resource and energy consumption, non-renewable resource consumption (ADP) of pollution gas emission, greenhouse effect (GWP), acidification effect (AP) and eutrophication (EP) and inhalable inorganics (RI) generated in the process of life cycle from raw material exploitation to produce production and other environmental influence closely related to the national energy conservation and emission reduction policy. The result shows that the influence indexes of non-renewable resource consumption for functional unit of PPR pipe, PE pipe and PVC-U pipe are 2.22×10-5 Kg antimony eq./ kg, 1.51×10-5 Kg antimony eq./ kg, 6.82×10-6 Kg antimony eq./ kg; those of acidification effect are 1.92×10-2kg SO2 eq./ kg, 1.96×10-2g SO2 eq./ kg, 3.90×10-2kg SO2 eq./ kg; those of eutrophication are 2.39×10-3kg PO43-eq./ kg, 2.36×10-3kg PO43-eq./ kg, 3.40×10-3kg PO43-eq./ kg; those of inhalable inorganics are 6.46×10-3 kg PM2.5 eq./ kg, 6.30×10-3 kg PM2.5 eq./ kg, 1.91×10-2 kg PM2.5 eq./ kg; those of greenhouse effect are 3.72kg CO2 eq./ kg, 3.60kg CO2 eq./ kg, 7.93kg CO2 eq./ kg. This result shows that the environmental influence of PPR, PE and PVC-U pipes mainly depends on the raw materials required for producing pipes, so the key of plastic pipeline greening is to reduce the consumption of virgin resin. This investigation creates a database about plastic pipeline's influence on environment within its full life cycle for the purpose of laying a foundation for calculating intrinsic energy in a building, promoting selection of green building material, facilitating the realization of green building objective, and improving the knowledge of developer, constructor and user to potential influence of the pipeline system within its life cycle.


2019 ◽  
Vol 8 (4) ◽  
pp. 304 ◽  
Author(s):  
Björn Koch ◽  
Fernando Peñaherrera ◽  
Alexandra Pehlken

Including criticality into Life Cycle Assessment (LCA) has always been challenging to achieve but desirable to accomplish. In this article, we present a new approach for the evaluation of resource consumption of products by building comparison values based on Life Cycle Impact Assessment (LCIA) combined with weighted criticality values to show the direct impacts of criticality on LCA results. For this purpose, we develop an impact indicator based on the Abiotic Depletion Potential (ADP) of natural resources and use the two main parameters defined by the EU to determine the criticality of a material - the economic importance and the supply risk – in our case studies to build the Criticality Weighted Abiotic Depletion Potentials (CWADPs), one for each parameter. These indicators allow identifying and measuring the impacts of criticality when comparing the results of resource depletion using the ADP methodology and the results that incorporate criticality. The comparison of the CWADPs to the corresponding EU criticality values and its thresholds it reflects the equivalent criticality of the assessed product. This information reflects the impacts of criticality on LCA and assesses the total resource consumption of critical materials in a system.Keywords: Life Cycle Assessment, criticality, resources, materials, sustainability indicator


Sign in / Sign up

Export Citation Format

Share Document