scholarly journals P.075 Rates of infection following craniotomy or craniectomy with subsequent cranioplasty in traumatic brain injury

Author(s):  
M Cadieux ◽  
C Gallagher

Background: Postoperative infection is a significant cause of morbidity and mortality in traumatic brain injury (TBI) patients who undergo craniotomy and/or craniectomy. Data on the rates of infections associated with these procedures are limited. We present a single-center retrospective study on the rates of infection in post-traumatic craniotomies, craniectomies and cranioplasties. Methods: Data on 100 TBI adult patients who underwent a craniotomy, craniectomy and/or cranioplasty from 2011-2015 will be analyzed. Demographic and perioperative data including open/closed TBI, peri/postoperative infections, duration of procedure, type and mode of bone flap preservation will be retrieved. Results: Following our data collection (to be completed by the end of February), we expect infection rates of 3-20% in our study. Upon instituting a protocol similar to the Hydrocephalus Clinical Research Network’s (HCRN) ventriculoperitoneal shunt (VP) protocol, we hope to reduce our post-TBI craniotomy/craniectomy/cranioplasty infections rates to less than 10%. Our projection is based on the HCRN protocol’s 3.15% absolute risk reduction of VP shunt infections. Conclusions: The results of this study will emphasize the need for instituting robust perioperative protocols to reduce infections. Further research will be pursued following this study to establish a protocol similar to the VP shunt protocol from the HCRN, in an attempt to reduce perioperative rates of infection.

2013 ◽  
Vol 21 (2) ◽  
pp. 222-228
Author(s):  
Daniel Garbin Di Luca ◽  
Glenda Corrêa Borges de Lacerda

Introduction. The estimated time interval in which an individual can develop Post Traumatic Epilepsy (PTE) after a traumatic brain injury (TBI) is not clear. Objective. To assess the possible influence of the clinical features in the time interval between TBI and PTE develop­ment. Method. We analyzed retrospectively 400 medical records from a tertiary Brazilian hospital. We selected and reevaluated 50 patients and data was confronted with the time between TBI and PTE devel­opment by a Kaplan-Meier survival analysis. A Cox-hazard regression was also conducted to define the characteristics that could be involved in the latent period of the PTE development. Results. Patients devel­oped PTE especially in the first year (56%). We found a tendency of a faster development of PTE in patients older than 24 years (P<0.0001) and in men (P=0.03). Complex partial seizures evolving to generalized seizures were predominant in patients after moderate (37.7%) and severe (48.8%) TBIs, and simple partial seizures evolving to general­ized seizures in mild TBIs (45.5%). Conclusions. Our data suggest that the first year after a TBI is the most critical period for PTE de­velopment and those males older than 24 years could have a faster development of PTE.


Author(s):  
Mary Beth Howard ◽  
Nichole McCollum ◽  
Emily C. Alberto ◽  
Hannah Kotler ◽  
Mary E. Mottla ◽  
...  

Abstract Objectives: In the absence of evidence of acute cerebral herniation, normal ventilation is recommended for patients with traumatic brain injury (TBI). Despite this recommendation, ventilation strategies vary during the initial management of patients with TBI and may impact outcome. The goal of this systematic review was to define the best evidence-based practice of ventilation management during the initial resuscitation period. Methods: A literature search of PubMed, CINAHL, and SCOPUS identified studies from 2009 through 2019 addressing the effects of ventilation during the initial post-trauma resuscitation on patient outcomes. Results: The initial search yielded 899 articles, from which 13 were relevant and selected for full-text review. Six of the 13 articles met the inclusion criteria, all of which reported on patients with TBI. Either end-tidal carbon dioxide (ETCO2) or partial pressure carbon dioxide (PCO2) were the independent variables associated with mortality. Decreased rates of mortality were reported in patients with normal PCO2 or ETCO2. Conclusions: Normoventilation, as measured by ETCO2 or PCO2, is associated with decreased mortality in patients with TBI. Preventing hyperventilation or hypoventilation in patients with TBI during the early resuscitation phase could improve outcome after TBI.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Marc Fakhoury ◽  
Zaynab Shakkour ◽  
Firas Kobeissy ◽  
Nada Lawand

Abstract Traumatic brain injury (TBI) represents a major health concern affecting the neuropsychological health; TBI is accompanied by drastic long-term adverse complications that can influence many aspects of the life of affected individuals. A substantial number of studies have shown that mood disorders, particularly depression, are the most frequent complications encountered in individuals with TBI. Post-traumatic depression (P-TD) is present in approximately 30% of individuals with TBI, with the majority of individuals experiencing symptoms of depression during the first year following head injury. To date, the mechanisms of P-TD are far from being fully understood, and effective treatments that completely halt this condition are still lacking. The aim of this review is to outline the current state of knowledge on the prevalence and risk factors of P-TD, to discuss the accompanying brain changes at the anatomical, molecular and functional levels, and to discuss current approaches used for the treatment of P-TD.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Catherine D. Chong ◽  
Jianwei Zhang ◽  
Jing Li ◽  
Teresa Wu ◽  
Gina Dumkrieger ◽  
...  

Abstract Background/objective Changes in speech can be detected objectively before and during migraine attacks. The goal of this study was to interrogate whether speech changes can be detected in subjects with post-traumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) and whether there are within-subject changes in speech during headaches compared to the headache-free state. Methods Using a series of speech elicitation tasks uploaded via a mobile application, PTH subjects and healthy controls (HC) provided speech samples once every 3 days, over a period of 12 weeks. The following speech parameters were assessed: vowel space area, vowel articulation precision, consonant articulation precision, average pitch, pitch variance, speaking rate and pause rate. Speech samples of subjects with PTH were compared to HC. To assess speech changes associated with PTH, speech samples of subjects during headache were compared to speech samples when subjects were headache-free. All analyses were conducted using a mixed-effect model design. Results Longitudinal speech samples were collected from nineteen subjects with PTH (mean age = 42.5, SD = 13.7) who were an average of 14 days (SD = 32.2) from their mTBI at the time of enrollment and thirty-one HC (mean age = 38.7, SD = 12.5). Regardless of headache presence or absence, PTH subjects had longer pause rates and reductions in vowel and consonant articulation precision relative to HC. On days when speech was collected during a headache, there were longer pause rates, slower sentence speaking rates and less precise consonant articulation compared to the speech production of HC. During headache, PTH subjects had slower speaking rates yet more precise vowel articulation compared to when they were headache-free. Conclusions Compared to HC, subjects with acute PTH demonstrate altered speech as measured by objective features of speech production. For individuals with PTH, speech production may have been more effortful resulting in slower speaking rates and more precise vowel articulation during headache vs. when they were headache-free, suggesting that speech alterations were related to PTH and not solely due to the underlying mTBI.


Sign in / Sign up

Export Citation Format

Share Document