scholarly journals P.169 Reduced radiation CT imaging for augmented reality spinal surgery applications

Author(s):  
M de Lotbiniere-Bassett ◽  
E Schonfeld ◽  
T Jansen ◽  
D Anthony ◽  
A Veeravagu

Background: There is growing evidence for the use of augmented reality (AR) in pedicle screw placement in spinal surgery to increase surgical accuracy, improve clinical outcomes and reduce the radiation exposure required for intraoperative navigation. Auto-segmentation is the cornerstone of AR applications because it correlates patient-specific anatomy to structures segmented from preoperative computed tomography (pCT) images. These AR techniques allow for a reduction in the radiation dose required to acquire CT images while maintaining accurate segmentation. Methods: In this study, we methodically increase the noise that is introduced into CT images to determine the image quality threshold that is required for auto-segmentation on pCT. We then enhance the images with denoising algorithms to evaluate the effect on the segmentation. Results: The pCT radiation dose is decreased to below the current lowest clinical threshold and the resulting images still produce segmentations that are appropriate for input into AR applications. The application of denoising algorithms to the images resulted in increased artifacts and decreased bone density. Conclusions: The CT image quality that is required for successful AR auto-segmentation is lower than that which is currently employed in spine surgery. Future research is required to identify the specific, clinically relevant radiation dose thresholds.

2018 ◽  
Vol 59 (12) ◽  
pp. 1458-1465 ◽  
Author(s):  
Stefan Haneder ◽  
Florian Siedek ◽  
Jonas Doerner ◽  
Gregor Pahn ◽  
Nils Grosse Hokamp ◽  
...  

Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor’s claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDIvol), and DLP were recorded and normalized to 68 cm acquisition length (DLP68). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4–32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDIvol (–10.1 ± 12.8%), DLP (−13.1 ± 13.9%), and DLP68 (–15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.


2021 ◽  
pp. 20201223
Author(s):  
Davide Ippolito ◽  
Cesare Maino ◽  
Anna Pecorelli ◽  
Ilaria Salemi ◽  
Davide Gandola ◽  
...  

Objectives: To compare image quality and radiation dose of CT images reconstructed with model-based iterative reconstruction (MBIR) and hybrid-iterative (HIR) algorithm in oncologic patients. Methods: 125 oncologic patients underwent both contrast-enhanced low- (100 kV), and standard (120 kV) dose CT, were enrolled. Image quality was assessed by using a 4-point Likert scale. CT attenuation values, expressed in Hounsfield unit (HU), were recorded within a regions of interest (ROI) of liver, spleen, paraspinal muscle, aortic lumen, and subcutaneous fat tissue. Image noise, expressed as standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. Radiation dose were analyzed. Paired Student’s t-test was used to compare all continuous variables. Results: The overall median score assessed as image quality for CT images with the MBIR algorithm was significantly higher in comparison with HIR [4 (range 3–4) vs 3 (3-4), p = 0.017]. CT attenuation values and SD were significantly higher and lower, respectively, in all anatomic districts in images reconstructed with MBIR in comparison with HIR ones (all p < 0.001). SNR and CNR values were higher in CT images reconstructed with MBIR, reaching a significant difference in all districts (all p < 0.001). Radiation dose were significantly lower in the MBIR group compared with the HIR group (p < 0.001). Conclusions: MBIR combined with low-kV setting allows an important dose reduction in whole-body CT imaging, reaching a better image quality both qualitatively and quantitatively. Advances in knowledge: MBIR with low-dose approach allows a reduction of dose exposure, maintaining high image quality, especially in patients which deserve a longlasting follow-up.


2017 ◽  
Vol 27 (9) ◽  
pp. 3609-3617 ◽  
Author(s):  
Hyun Gi Kim ◽  
Ho-Joon Lee ◽  
Seung-Koo Lee ◽  
Hyun Ji Kim ◽  
Myung-Joon Kim

2020 ◽  
Vol 24 (3) ◽  
pp. 107-113
Author(s):  
A. Yu. Silin ◽  
I. S. Gruzdev ◽  
G. V. Berkovich ◽  
A. E. Nikolaev ◽  
S. P. Morozov

Aim: A literature review of the possibilities of applying model iterative reconstruction (MIR) in computed tomography to improve image quality, including in low-dose scanning protocols.Materials and methods. The analysis of publications devoted to the application of MIR to reduce the radiation dose and improve the quality of images in CT diagnostics of lung pathology with an emphasis on the value of the achieved radiation dose was carried out.Results. The use of MIR eliminates digital noise from medical images, improving their quality. This feature can significantly reduce radiation exposure with low-dose protocols without loss of diagnostic quality. On average, application of MIR allows to reduce the radiation dose by 70% compared to a standard protocol, without increasing the noise level of CT images and maintaining the contrast-to-noise ratio. Previous studies have shown positive experience with the use of MIR in lung cancer screening programs and monitoring of cancer patients.Conclusion. The introduction of MIR in clinical practice can optimize the radiation exposure on the population without reducing the quality of CT images, however, the threshold dose to achieve a satisfactory image quality remains unexplored.


2010 ◽  
Vol 37 (6Part4) ◽  
pp. 3118-3118
Author(s):  
H.Y. Tsai ◽  
H.L. Liu ◽  
C.C. Chen ◽  
Y.S. Hwang

Sign in / Sign up

Export Citation Format

Share Document