scholarly journals Development Methodology for Optomechatronic Systems Using the Example of a High-Resolution Projection Module

Author(s):  
Peer-Phillip Ley ◽  
Marvin Knöchelmann ◽  
Gerolf Kloppenburg ◽  
Roland Lachmayer

AbstractIn the last few years there has been a noticeable change in the development of headlamp systems in the field of vehicle lighting technology. Starting with adaptive front-lighting systems via Matrix LED systems, high-resolution headlamps will provide more safety in road traffic in the near future.For the implementation of high-resolution headlamps various spatial light modulators and light generating technologies can be applied. The emitted light of the light source is directed via an illumination optics onto the modulator and a projection optics is applied to image the spatial light modulator into the traffic area. The formerly mechatronic systems are thus increasingly become opto- mechatronic systems. Therefore, the optic design must be taken into account in the early development phase of these systems.In this paper we present a methodical approach to describe the optic design for optomechatronic systems. This approach can be used to develop efficient and high-intensity optomechatronic systems using various spatial light modulators and light generating technologies. Conclusively we demonstrate an exemplary application of the methodology on a high-resolution projection module.

Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1087-1090 ◽  
Author(s):  
Shi-Qiang Li ◽  
Xuewu Xu ◽  
Rasna Maruthiyodan Veetil ◽  
Vytautas Valuckas ◽  
Ramón Paniagua-Domínguez ◽  
...  

Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Remington S. Ketchum ◽  
Pierre-Alexandre Blanche

Micro-electro mechanical systems (MEMS)-based phase-only spatial light modulators (PLMs) have the potential to overcome the limited speed of liquid crystal on silicon (LCoS) spatial light modulators (SLMs) and operate at speeds faster than 10 kHz. This expands the practicality of PLMs to several applications, including communications, sensing, and high-speed displays. The complex structure and fabrication requirements for large, 2D MEMS arrays with vertical actuation have kept MEMS-based PLMs out of the market in favor of LCoS SLMs. Recently, Texas Instruments has adapted its existing DMD technology for fabricating MEMS-based PLMs. Here, we characterize the diffraction efficiency for one of these PLMs and examine the effect of a nonlinear distribution of addressable phase states across a range of wavelengths and illumination angles.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Carsten Gut ◽  
Iulia Cristea ◽  
Cornelius Neumann

AbstractThe following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.


2019 ◽  
Vol 9 (10) ◽  
pp. 2012 ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

Phase-only Spatial Light Modulator (SLM) is one of the most widely used devices for phase modulation. It has been successfully applied in the field with requirements of precision phase modulation such as holographic display, optical tweezers, lithography, etc. However, due to the limitations in the manufacturing process, the grayscale-phase response could be different for every single SLM device, even varying on sections of an SLM panel. A diverse array of calibration methods have been proposed and could be sorted into two categories: the interferometric phase calibration methods and the diffractive phase calibration methods. The principles of phase-only SLM are introduced. The main phase calibration methods are discussed and reviewed. The advantages of these methods are analyzed and compared. The potential methods for different applications are suggested.


2003 ◽  
Author(s):  
Steven A. Serati ◽  
Xiaowei Xia ◽  
Owais Mughal ◽  
Anna Linnenberger

1994 ◽  
Vol 65 (8) ◽  
pp. 956-958 ◽  
Author(s):  
S. R. Bowman ◽  
W. S. Rabinovich ◽  
C. S. Kyono ◽  
D. S. Katzer ◽  
K. Ikossi‐Anastasiou

1991 ◽  
Vol 219 ◽  
Author(s):  
Garret Moddel ◽  
Pierre R. Barbier

ABSTRACTA successful application for a-Si:H is as the photosensor in a liquid crystal optically addressed spatial light modulator (OASLM). We analyze the response time of an a-Si:H p-i-n photodiode in a “pseudo-OALSM,” in which the liquid crystal is replaced by an equivalent capacitor, under both forward and reverse bias. Under reverse bias the two important effects are the photocurrent response time, and residual trapped charge. Under forward bias the mechanism shifts from double injection regimes to ohmic transport as a function of voltage. We relate these characteristics to the operation of an OASLM.


2013 ◽  
Author(s):  
F. Rückerl ◽  
Martin Kielhorn ◽  
J-Y. Tinevez ◽  
J. Heber ◽  
R. Heintzmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document