scholarly journals Closed subgroups generated by generic measure automorphisms

2013 ◽  
Vol 34 (3) ◽  
pp. 1011-1017 ◽  
Author(s):  
SŁAWOMIR SOLECKI

AbstractWe prove that for a generic measure-preserving transformation $T$, the closed group generated by $T$ is a continuous homomorphic image of a closed linear subspace of $L_0(\lambda , {\mathbb R})$, where $\lambda $ is the Lebesgue measure, and that the closed group generated by $T$contains an increasing sequence of finite-dimensional tori whose union is dense.

1988 ◽  
Vol 109 ◽  
pp. 47-61 ◽  
Author(s):  
Jürgen Potthoff

In this article we prove a number of inequalities of Littlewood-Paley-Stein (LPS) type for functions on general Gaussian spaces (s. below).In finite dimensional Euclidean spaces (with Lebesgue measure) the power of such inequalities has been demonstrated in Stein’s book [12]. In his second book [13], Stein treats other spaces too: also the situation of a general measure space (X, μ). However the latter case is too general to allow for a rich class of inequalities (cf. Theorem 10 in [13]).


2014 ◽  
Vol 57 (4) ◽  
pp. 810-813 ◽  
Author(s):  
G. Godefroy

AbstractWe show that if E is a separable reflexive space, and L is a weak-star closed linear subspace of L(E) such that L ∩ K(E) is weak-star dense in L, then L has a unique isometric predual. The proof relies on basic topological arguments.


1997 ◽  
Vol 40 (2) ◽  
pp. 325-330
Author(s):  
Anthony J. Felton ◽  
H. P. Rogosinski

In this paper we generalise some of the results obtained in [1] for the n-dimensional real spaces ℓp(n) to the infinite dimensional real spaces ℓp. Let p >1 with p ≠ 2, and let x be a non-zero real sequence in ℓp. Let ε(x) denote the closed linear subspace spanned by the set of all those sequences in ℓp which are biorthogonal to x with respect to the unique semi-inner-product on ℓp consistent with the norm on ℓp. In this paper we show that codim ε(x)=1 unless either x has exactly two non-zero coordinates which are equal in modulus, or x has exactly three non-zero coordinates α, β, γ with |α| ≥ |β| ≥ |γ| and |α|p > |β|p + |γ|p. In these exceptional cases codim ε(x) = 2. We show that is a linear subspace if, and only if, x has either at most two non-zero coordinates or x has exactly three non-zero coordinates which satisfy the inequalities stated above.


1978 ◽  
Vol 30 (02) ◽  
pp. 373-391 ◽  
Author(s):  
Robert J. Zimmer

If a locally compact group G acts as a measure preserving transformation group on a Lebesgue space X, then there is a naturally induced unitary representation of G on L2(X), and one can study the action on X by means of this representation. The situation in which the representation has discrete spectrum (i.e., is the direct sum of finite dimensional representations) and the action is ergodic was examined by von Neumann and Halmos when G is the integers or the real line [7], and by Mackey for general non-abelian G [10].


Author(s):  
Sergey S. Platonov

Let G be a zero-dimensional locally compact Abelian group whose elements are compact, C(G) the space of continuous complex-valued functions on the group G. A closed linear subspace H⊆ C(G) is called invariant subspace, if it is invariant with respect to translations τ_y ∶ f(x) ↦ f(x + y), y ∈ G. We prove that any invariant subspace H admits spectral synthesis, which means that H coincides with the closure of the linear span of all characters of the group G contained in H.


2018 ◽  
Vol 34 ◽  
pp. 71-114
Author(s):  
Clément De Seguins Pazzis

Let U and V be finite-dimensional vector spaces over a field K, and S be a linear subspace of the space L(U, V ) of all linear operators from U to V. A map F : S → V is called range-compatible when F(s) ∈ Im s for all s ∈ S. Previous work has classified all the range-compatible group homomorphisms provided that codimL(U,V )S ≤ 2 dim V − 3, except in the special case when K has only two elements and codimL(U,V )S = 2 dim V − 3. This article gives a thorough treatment of that special case. The results are partly based upon the recent classification of vector spaces of matrices with rank at most 2 over F2. As an application, the 2-dimensional non-reflexive operator spaces are classified over any field, and so do the affine subspaces of Mn,p(K) with lower-rank at least 2 and codimension 3.


Filomat ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 2341-2347
Author(s):  
Manasi Mandal ◽  
Mandobi Banerjee

In this article we recall a remarkable result stated as "For a fixed ?, 0 < ? ? 1, the set of all bounded statistically convergent sequences of order ? is a closed linear subspace of m (m is the set of all bounded real sequences endowed with the sup norm)" by Bhunia et al. (Acta Math. Hungar. 130 (1-2) (2012), 153-161) and to develop the objective of this perception we demonstrate that the set of all bounded statistically convergent sequences of order ? may not form a closed subspace in other sequence spaces. Also we determine two different sequence spaces in which the set of all statistically convergent sequences of order ? (irrespective of boundedness) forms a closed set.


1975 ◽  
Vol 12 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Ivan Singer

We prove that if E is a Banach space which has a subspace G such that the conjugate space G* contains a proper norm closed linear subspace V of characteristic 1, then E** is not smooth and there exist in πE(E) points of non-smoothness for E**, where πE: E → E** is the canonical embedding. We show that the spaces E having such a subspace G constitute a large proper subfamily of the family of all non-reflexive Banach spaces.


1998 ◽  
Vol 1 ◽  
pp. 42-74 ◽  
Author(s):  
E.B. Davies

AbstractThis paper considers a number of related problems concerning the computation of eigenvalues and complex resonances of a general self-adjoint operator H. The feature which ties the different sections together is that one restricts oneself to spectral properties of H which can be proved by using only vectors from a pre-assigned (possibly finite-dimensional) linear subspace L.


1975 ◽  
Vol 13 (3) ◽  
pp. 411-419 ◽  
Author(s):  
B.D. Craven

The sufficient optimality conditions, of Fritz John type, given by Gulati for finite-dimensional nonlinear programming problems involving polyhedral cones, are extended to problems with arbitrary cones and spaces of arbitrary dimension, whether real or complex. Convexity restrictions on the function giving the equality constraint can be avoided by applying a modified notion of convexity to the other functions in the problem. This approach regards the problem as optimizing on a differentiable manifold, and transforms the problem to a locally equivalent one where the optimization is on a linear subspace.


Sign in / Sign up

Export Citation Format

Share Document