scholarly journals A strongly irreducible affine iterated function system with two invariant measures of maximal dimension

2020 ◽  
pp. 1-22
Author(s):  
IAN D. MORRIS ◽  
CAGRI SERT

Abstract A classical theorem of Hutchinson asserts that if an iterated function system acts on $\mathbb {R}^{d}$ by similitudes and satisfies the open set condition then it admits a unique self-similar measure with Hausdorff dimension equal to the dimension of the attractor. In the class of measures on the attractor, which arise as the projections of shift-invariant measures on the coding space, this self-similar measure is the unique measure of maximal dimension. In the context of affine iterated function systems it is known that there may be multiple shift-invariant measures of maximal dimension if the linear parts of the affinities share a common invariant subspace, or more generally if they preserve a finite union of proper subspaces of $\mathbb {R}^{d}$ . In this paper we give an example where multiple invariant measures of maximal dimension exist even though the linear parts of the affinities do not preserve a finite union of proper subspaces.

2018 ◽  
Vol 40 (1) ◽  
pp. 221-232
Author(s):  
SABRINA KOMBRINK ◽  
STEFFEN WINTER

We show that any non-trivial self-similar subset of the real line that is invariant under a lattice iterated function system (IFS) satisfying the open set condition (OSC) is not Minkowski measurable. So far, this has only been known for special classes of such sets. Thus, we provide the last puzzle-piece in proving that under the OSC a non-trivial self-similar subset of the real line is Minkowski measurable if and only if it is invariant under a non-lattice IFS, a 25-year-old conjecture.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050130
Author(s):  
SI CHEN ◽  
MIN-WEI TANG

Let [Formula: see text] be the unit matrix and [Formula: see text]. In this paper, we consider the self-similar measure [Formula: see text] on [Formula: see text] generated by the iterated function system [Formula: see text] where [Formula: see text]. We prove that there exists [Formula: see text] such that [Formula: see text] is an orthonormal basis for [Formula: see text] if and only if [Formula: see text] for some integer [Formula: see text].


1994 ◽  
Vol 37 (3) ◽  
pp. 315-329 ◽  
Author(s):  
P. M. Centore ◽  
E. R. Vrscay

AbstractWe prove the "folklore" results that both the attractor A and invariant measure μ of an N-map Iterated Function System (IFS) vary continuously with variations in the contractive IFS maps as well as the probabilities. This represents a generalization of Barnsley's result showing the continuity of attractors with respect to variations of a parameter appearing in the IFS maps. Some applications are presented, including approximations of attractors and invariant measures of nonlinear IFS, as well as some novel approximations of Julia sets for quadratic complex maps.


2018 ◽  
Vol 167 (01) ◽  
pp. 193-207 ◽  
Author(s):  
ÁBEL FARKAS

AbstractWe show that for the attractor (K1, . . ., Kq) of a graph directed iterated function system, for each 1 ⩽ j ⩽ q and ϵ > 0 there exists a self-similar set K ⊆ Kj that satisfies the strong separation condition and dimHKj − ϵ < dimHK. We show that we can further assume convenient conditions on the orthogonal parts and similarity ratios of the defining similarities of K. Using this property as a ‘black box’ we obtain results on a range of topics including on dimensions of projections, intersections, distance sets and sums and products of sets.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950051 ◽  
Author(s):  
KAN JIANG ◽  
XIAOMIN REN ◽  
JIALI ZHU ◽  
LI TIAN

Let [Formula: see text] be the attractor of the following iterated function system (IFS) [Formula: see text] where [Formula: see text] and [Formula: see text] is the convex hull of [Formula: see text]. The main results of this paper are as follows: [Formula: see text] if and only if [Formula: see text] where [Formula: see text]. If [Formula: see text], then [Formula: see text]As a consequence, we prove that the following conditions are equivalent:(1) For any [Formula: see text], there are some [Formula: see text] such that [Formula: see text].(2) For any [Formula: see text], there are some [Formula: see text] such that [Formula: see text](3) [Formula: see text].


Fractals ◽  
2003 ◽  
Vol 11 (03) ◽  
pp. 277-288 ◽  
Author(s):  
A. K. B. Chand ◽  
G. P. Kapoor

We construct hidden variable bivariate fractal interpolation surfaces (FIS). The vector valued iterated function system (IFS) is constructed in ℝ4 and its projection in ℝ3 is taken. The extra degree of freedom coming from ℝ4 provides hidden variable, which is an important factor for flexibility and diversity in the interpolated surface. In the present paper, we construct an IFS that generates both self-similar and non-self-similar FIS simultaneously and show that the hidden variable fractal surface may be self-similar under certain conditions.


2009 ◽  
Vol 23 (03) ◽  
pp. 513-516 ◽  
Author(s):  
HAO ZHU ◽  
KEMING CHENG

In this article, we investigate the energy cascade of three-dimensional turbulent flows, in which the break-up process of eddy is quasi-self-similar. Mathematically this kind of turbulence with quasi-self-similar structure eddies can be regarded as cookie-cutter system, and can be generated by self-similar iterated function system (IFS) with added nonlinear disturbance. Using Bowen's result, we can calculate the exponent of dissipative correlated function, dissipated velocity, energy spectrum supported on cookie-cutter system. The present results show that the β-model is feasible for this kind of quasi-self-similar turbulence.


2018 ◽  
Vol 7 (3.31) ◽  
pp. 126
Author(s):  
Minirani S ◽  
. .

A finite collection of mappings which are contractions on a complete metric space constitutes an iterated function system. In this paper we study the generalized iterated function system which contain generalized contractions of integral type from the product space . We prove the existence and uniqueness of the fixed point of such an iterated function system which is also known as its attractor. 


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Maliheh Mohtashamipour ◽  
Alireza Zamani Bahabadi

AbstractIn this paper, we define accessibility on an iterated function system (IFS) and show that it provides a sufficient condition for the transitivity of this system and its corresponding skew product. Then, by means of a certain tool, we obtain the topologically mixing property. We also give some results about the ergodicity and stability of accessibility and, further, illustrate accessibility by some examples.


Sign in / Sign up

Export Citation Format

Share Document