scholarly journals Ergodic cocycles of IDPFT systems and non-singular Gaussian actions

2021 ◽  
pp. 1-31
Author(s):  
ALEXANDRE I. DANILENKO ◽  
MARIUSZ LEMAŃCZYK

Abstract It is proved that each Gaussian cocycle over a mildly mixing Gaussian transformation is either a Gaussian coboundary or sharply weak mixing. The class of non-singular infinite direct products T of transformations $T_n$ , $n\in \mathbb N$ , of finite type is studied. It is shown that if $T_n$ is mildly mixing, $n\in \mathbb N$ , the sequence of Radon–Nikodym derivatives of $T_n$ is asymptotically translation quasi-invariant and T is conservative then the Maharam extension of T is sharply weak mixing. This technique provides a new approach to the non-singular Gaussian transformations studied recently by Arano, Isono and Marrakchi.

2017 ◽  
Vol 89 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Beata Podkościelna ◽  
Marta Goliszek ◽  
Olena Sevastyanova

AbstractIn this study, a novel method for the synthesis of hybrid, porous microspheres, including divinylbenzene (DVB), triethoxyvinylsilane (TEVS) and methacrylated lignin (L-Met), is presented. The methacrylic derivatives of kraft lignin were obtained by reaction with methacryloyl chloride according to a new experimental protocol. The course of the modification of lignin was confirmed by attenuated total reflectance (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The emulsion-suspension polymerization method was employed to obtain copolymers of DVD, TEVS and L-Met in spherical forms. The porous structures and morphologies of the obtained lignin-containing functionalized microspheres were investigated by low-temperature nitrogen adsorption data and scanning electron microscopy (SEM). The microspheres are demonstrated to be mesoporous materials with specific surface areas in the range of 430–520 m2/g. The effects of the lignin component on the porous structure, shape, swelling and thermal properties of the microspheres were evaluated.


1996 ◽  
Vol 61 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Vladimír Pouzar ◽  
Ivan Černý

New approach to the preparation of steroids with connecting bridge, based on an O-carboxymethyloxime (CMO) structure, and with terminal hydroxy group, is presented. 17-CMO derivatives of 3β-acetoxy- and 3β-methoxymethoxyandrost-5-en-17-one were condensed with α,ω-amino alcohols to give derivatives with a chain of seven to nine atoms. After THP-protection, these compounds were converted to 3-keto-4-ene derivatives. An alternative synthesis consisted in transformation of 17-CMO derivatives with bonded amino acids by reduction of the terminal carboxyl. The resulting compounds were designed as building blocks for the preparation of bis-haptens for sandwich immunoassays.


2018 ◽  
Vol 88 (4) ◽  
pp. 682-688 ◽  
Author(s):  
V. V. Dotsenko ◽  
S. G. Krivokolysko ◽  
B. S. Krivokolysko ◽  
K. A. Frolov

1981 ◽  
Vol 33 (6) ◽  
pp. 1331-1337 ◽  
Author(s):  
Yasunori Ishibashi

In a recent paper [6], P. Seibt has obtained the following result: Let k be a field of characteristic 0, k[T1, … , Tr] the polynomial ring in r indeterminates over k, and let P be a prime ideal of k[T1, … , Tr]. Then a polynomial F belongs to the n-th symbolic power P(n) of P if and only if all higher derivatives of F from the 0-th up to the (n – l)-st order belong to P.In this work we shall naturally generalize this result so as to be valid for primes of the polynomial ring over a perfect field k. Actually, we shall get a generalization as a corollary to a theorem which asserts: For regular primes P in a k-algebra R of finite type, a certain differential filtration of R associated with P coincides with the symbolic power filtration (P(n))n≧0.


2019 ◽  
Vol 36 (9) ◽  
pp. 3108-3121
Author(s):  
Jian-Ming Fu ◽  
Hai-Min Tang ◽  
Hong-Quan Chen

Purpose The purpose of this paper is to develop a new approach for rapid computation of subsonic and low-transonic rotary derivatives with the available steady solutions obtained by Euler computational fluid dynamics (CFD) codes. Design/methodology/approach The approach is achieved by the perturbation on the steady-state pressure of Euler CFD codes. The resulting perturbation relation is established at a reference Mach number between rotary derivatives and normal velocity on surface due to angular velocity. The solution of the reference Mach number is generated technically by Prandtl–Glauert compressibility correction based on any Mach number of interest under the assumption of simple strip theory. Rotary derivatives of any Mach number of interest are then inversely predicted by the Prandtl–Glauert rule based on the reference Mach number aforementioned. Findings The resulting method has been verified for three typical different cases of the Basic Finner Reference Projectile, the Standard Dynamics Model Aircraft and the Orion Crew Module. In comparison with the original perturbation method, the performance at subsonic and low-transonic Mach numbers has significantly improved with satisfactory accuracy for most design efforts. Originality/value The approach presented is verified to be an efficient way for computation of subsonic and low-transonic rotary derivatives, which are performed almost at the same time as an accounting solution of steady Euler equations.


2019 ◽  
Vol 55 (99) ◽  
pp. 14976-14979 ◽  
Author(s):  
Saroj Kumar Rout ◽  
Gilles Marghem ◽  
Junjie Lan ◽  
Tom Leyssens ◽  
Olivier Riant

A new approach for the installation of the bicyclo[1.1.1]pentane unit on the xanthate moiety by means of a radical exchange process.


2014 ◽  
Vol 43 (13) ◽  
pp. 5044-5053 ◽  
Author(s):  
Maria V. Zakharova ◽  
Igor B. Sivaev ◽  
Sergey A. Anufriev ◽  
Sergey V. Timofeev ◽  
Kyrill Yu. Suponitsky ◽  
...  

1997 ◽  
Vol 15 (4) ◽  
pp. 495-506
Author(s):  
N.A. Inogamov

The problem of hydrodynamic stability is important for inertial confinement fusion (ICF) systems based upon high compression of fuel before its ignition. This problem for the case of complicated multilayer foils has been studied here by a new approach describing the development of Rayleigh-Taylor or interchange instability in compressible media with inhomogeneous distribution of “entropy”s = ρ/ρk, ∂ where K = (∂ In ρ/∂ In ρ)s is an adiabatic derivative taken in the local hydrostatic values of ρ and ρ. Inhomogeneous distribution of s simulates the dynamics of development of perturbations of multilayer flyer foils and shells. Besides instability, the same approach has been used for analysis of ID pulsations of a levitated foil. The problem of pulsations is real in the case of foils. Indeed, (1) an ablative acceleration is equivalent to an effective gravity field, which causes the appearance of an atmospheric-type distribution of thermodynamic functions, (2) the duration of ablative flight of foil is at least several times larger than the time that is necessary for an acoustic wave to travel from one side of the foil to another side, and (3) there is a strong initial impulse that initiates the motion of foil. This impulse together with (1, 2) is a reason for the powerful pulsations of foils. The period of pulsations is defined by the velocity of sound in the foil material, which is dependent on the derivatives of an equation of state (EOS). The check of the derivatives gives us finer information concerning the current state of matter and the EOS than the usual measurements of material velocity and pressure that are rougher measures. Therefore, an analysis of pulsations seems to be a promising tool for tracking the dynamics of flyer foil and for the definition of thermodynamic properties of matter.


Sign in / Sign up

Export Citation Format

Share Document