scholarly journals Packing topological entropy for amenable group actions

2021 ◽  
pp. 1-35
Author(s):  
DOU DOU ◽  
DONGMEI ZHENG ◽  
XIAOMIN ZHOU

Abstract Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.

2020 ◽  
pp. 1-10
Author(s):  
NILSON C. BERNARDES ◽  
UDAYAN B. DARJI ◽  
RÔMULO M. VERMERSCH

Abstract Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.


2016 ◽  
Vol 26 (07) ◽  
pp. 1650110
Author(s):  
Xiankun Ren ◽  
Wenxiang Sun

Let [Formula: see text] be a compact metric space and [Formula: see text] a countable infinite discrete amenable group acting on [Formula: see text]. Like in the [Formula: see text]-action cases we define the notion of local entropy and by it we bound the difference between metric entropy and that of a partition, and bound the difference between topological entropy and that of a separated set, which generalize Theorems 1(1) and 1(2) in [Newhouse, 1989] from [Formula: see text]-actions to amenable group actions. We further prove that the entropy function [Formula: see text] is upper semi-continuous on [Formula: see text] for an asymptotic entropy expansive amenable group action.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


2021 ◽  
pp. 1-16
Author(s):  
Jiao Yang

Abstract In this paper, we introduce measure-theoretic for Borel probability measures to characterize upper and lower Katok measure-theoretic entropies in discrete type and the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case. Then we establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems. JEL classification numbers: 37A35. Keywords: Nonautonomous, Measure-theoretical entropies, Variational principles.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150151
Author(s):  
Risong Li ◽  
Tianxiu Lu ◽  
Xiaofang Yang ◽  
Yongxi Jiang

Let [Formula: see text] be a nontrivial compact metric space with metric [Formula: see text] and [Formula: see text] be a continuous self-map, [Formula: see text] be the sigma-algebra of Borel subsets of [Formula: see text], and [Formula: see text] be a Borel probability measure on [Formula: see text] with [Formula: see text] for any open subset [Formula: see text] of [Formula: see text]. This paper proves the following results : (1) If the pair [Formula: see text] has the property that for any [Formula: see text], there is [Formula: see text] such that [Formula: see text] for any open subset [Formula: see text] of [Formula: see text] and all [Formula: see text] sufficiently large (where [Formula: see text] is the characteristic function of the set [Formula: see text]), then the following hold : (a) The map [Formula: see text] is topologically ergodic. (b) The upper density [Formula: see text] of [Formula: see text] is positive for any open subset [Formula: see text] of [Formula: see text], where [Formula: see text]. (c) There is a [Formula: see text]-invariant Borel probability measure [Formula: see text] having full support (i.e. [Formula: see text]). (d) Sensitivity of the map [Formula: see text] implies positive lower density sensitivity, hence ergodical sensitivity. (2) If [Formula: see text] for any two nonempty open subsets [Formula: see text], then there exists [Formula: see text] satisfying [Formula: see text] for any nonempty open subset [Formula: see text], where [Formula: see text] there exist [Formula: see text] with [Formula: see text].


2018 ◽  
Vol 40 (2) ◽  
pp. 367-401 ◽  
Author(s):  
MICHAEL A. BURR ◽  
MARTIN SCHMOLL ◽  
CHRISTIAN WOLF

Let$f:X\rightarrow X$be a continuous dynamical system on a compact metric space$X$and let$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$be an$m$-dimensional continuous potential. The (generalized) rotation set$\text{Rot}(\unicode[STIX]{x1D6F7})$is defined as the set of all$\unicode[STIX]{x1D707}$-integrals of$\unicode[STIX]{x1D6F7}$, where$\unicode[STIX]{x1D707}$runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy$\unicode[STIX]{x210B}(w)$to each$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$. In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where$f$is a subshift of finite type. We prove that$\text{Rot}(\unicode[STIX]{x1D6F7})$is computable and that$\unicode[STIX]{x210B}(w)$is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general,$\unicode[STIX]{x210B}$is not continuous on the boundary of the rotation set when considered as a function of$\unicode[STIX]{x1D6F7}$and$w$. In particular,$\unicode[STIX]{x210B}$is, in general, not computable at the boundary of$\text{Rot}(\unicode[STIX]{x1D6F7})$.


2019 ◽  
Vol 40 (11) ◽  
pp. 3150-3168
Author(s):  
BENJAMIN D. MILLER

We show that a natural generalization of compressibility is the sole obstruction to the existence of a cocycle-invariant Borel probability measure.


2020 ◽  
pp. 1-21
Author(s):  
GÁBOR ELEK

We prove that for any countable group $\unicode[STIX]{x1D6E4}$ , there exists a free minimal continuous action $\unicode[STIX]{x1D6FC}:\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{C}}$ on the Cantor set admitting an invariant Borel probability measure.


Author(s):  
Márton Elekes ◽  
Márk Poór

A subset X of a Polish group G is Haar null if there exists a Borel probability measure μ and a Borel set B containing X such that μ(gBh) = 0 for every g, h ∈ G. A set X is Haar meager if there exists a compact metric space K, a continuous function f : K → G and a Borel set B containing X such that f−1(gBh) is meager in K for every g, h ∈ G. We calculate (in ZFC) the four cardinal invariants (add, cov, non, cof) of these two σ-ideals for the simplest non-locally compact Polish group, namely in the case $G = \mathbb {Z}^\omega$ . In fact, most results work for separable Banach spaces as well, and many results work for Polish groups admitting a two-sided invariant metric. This answers a question of the first named author and Vidnyánszky.


2019 ◽  
pp. 1-17
Author(s):  
DANIEL LENZ

We study dynamical systems $(X,G,m)$ with a compact metric space $X$ , a locally compact, $\unicode[STIX]{x1D70E}$ -compact, abelian group $G$ and an invariant Borel probability measure $m$ on $X$ . We show that such a system has a discrete spectrum if and only if a certain space average over the metric is a Bohr almost periodic function. In this way, this average over the metric plays, for general dynamical systems, a similar role to that of the autocorrelation measure in the study of aperiodic order for special dynamical systems based on point sets.


Sign in / Sign up

Export Citation Format

Share Document