scholarly journals AN -FUNCTION-FREE PROOF OF VINOGRADOV’S THREE PRIMES THEOREM

2014 ◽  
Vol 2 ◽  
Author(s):  
XUANCHENG SHAO

AbstractWe give a new proof of Vinogradov’s three primes theorem, which asserts that all sufficiently large odd positive integers can be written as the sum of three primes. Existing proofs rely on the theory of $L$-functions, either explicitly or implicitly. Our proof is sieve theoretical and uses a transference principle, the idea of which was first developed by Green [Ann. of Math. (2) 161 (3) (2005), 1609–1636] and used in the proof of Green and Tao’s theorem [Ann. of Math. (2) 167 (2) (2008), 481–547]. To make our argument work, we also develop an additive combinatorial result concerning popular sums, which may be of independent interest.


2010 ◽  
Vol 200 ◽  
pp. 59-91 ◽  
Author(s):  
Jörg Brüdern ◽  
Trevor D. Wooley

AbstractWe establish that almost all natural numbers n are the sum of four cubes of positive integers, one of which is no larger than n5/36. The proof makes use of an estimate for a certain eighth moment of cubic exponential sums, restricted to minor arcs only, of independent interest.



1968 ◽  
Vol 20 ◽  
pp. 456-464 ◽  
Author(s):  
John Poland

This paper presents a list of all finite groups having exactly six and seven conjugate classes and an outline of the background necessary for the proof, and gives, in particular, two results which may be of independent interest. In 1903 E. Landau (8) proved, by induction, that for each the equation*has only finitely many solutions over the positive integers.



2010 ◽  
Vol 200 ◽  
pp. 59-91
Author(s):  
Jörg Brüdern ◽  
Trevor D. Wooley

AbstractWe establish that almost all natural numbersnare the sum of four cubes of positive integers, one of which is no larger thann5/36. The proof makes use of an estimate for a certain eighth moment of cubic exponential sums, restricted to minor arcs only, of independent interest.



2016 ◽  
Author(s):  
David Barner

Perceptual representations – e.g., of objects or approximate magnitudes –are often invoked as building blocks that children combine with linguisticsymbols when they acquire the positive integers. Systems of numericalperception are either assumed to contain the logical foundations ofarithmetic innately, or to supply the basis for their induction. Here Ipropose an alternative to this general framework, and argue that theintegers are not learned from perceptual systems, but instead arise toexplain perception as part of language acquisition. Drawing oncross-linguistic data and developmental data, I show that small numbers(1-4) and large numbers (~5+) arise both historically and in individualchildren via entirely distinct mechanisms, constituting independentlearning problems, neither of which begins with perceptual building blocks.Specifically, I propose that children begin by learning small numbers(i.e., *one, two, three*) using the same logical resources that supportother linguistic markers of number (e.g., singular, plural). Several yearslater, children discover the logic of counting by inferring the logicalrelations between larger number words from their roles in blind countingprocedures, and only incidentally associate number words with perception ofapproximate magnitudes, in an *ad hoc* and highly malleable fashion.Counting provides a form of explanation for perception but is not causallyderived from perceptual systems.



2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.



10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.



10.37236/1735 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Dhruv Mubayi ◽  
Yi Zhao

Given positive integers $n,k,t$, with $2 \le k\le n$, and $t < 2^k$, let $m(n,k,t)$ be the minimum size of a family ${\cal F}$ of nonempty subsets of $[n]$ such that every $k$-set in $[n]$ contains at least $t$ sets from ${\cal F}$, and every $(k-1)$-set in $[n]$ contains at most $t-1$ sets from ${\cal F}$. Sloan et al. determined $m(n, 3, 2)$ and Füredi et al. studied $m(n, 4, t)$ for $t=2, 3$. We consider $m(n, 3, t)$ and $m(n, 4, t)$ for all the remaining values of $t$ and obtain their exact values except for $k=4$ and $t= 6, 7, 11, 12$. For example, we prove that $ m(n, 4, 5) = {n \choose 2}-17$ for $n\ge 160$. The values of $m(n, 4, t)$ for $t=7,11,12$ are determined in terms of well-known (and open) Turán problems for graphs and hypergraphs. We also obtain bounds of $m(n, 4, 6)$ that differ by absolute constants.



2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.



Author(s):  
Olivia Caramello

This chapter develops a general theory of extensions of flat functors along geometric morphisms of toposes; the attention is focused in particular on geometric morphisms between presheaf toposes induced by embeddings of categories and on geometric morphisms to the classifying topos of a geometric theory induced by a small category of set-based models of the latter. A number of general results of independent interest are established on the way, including developments on colimits of internal diagrams in toposes and a way of representing flat functors by using a suitable internalized version of the Yoneda lemma. These general results will be instrumental for establishing in Chapter 6 the main theorem characterizing the class of geometric theories classified by a presheaf topos and for applying it.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mark Girard ◽  
Martin Plávala ◽  
Jamie Sikora

AbstractGiven two quantum channels, we examine the task of determining whether they are compatible—meaning that one can perform both channels simultaneously but, in the future, choose exactly one channel whose output is desired (while forfeiting the output of the other channel). Here, we present several results concerning this task. First, we show it is equivalent to the quantum state marginal problem, i.e., every quantum state marginal problem can be recast as the compatibility of two channels, and vice versa. Second, we show that compatible measure-and-prepare channels (i.e., entanglement-breaking channels) do not necessarily have a measure-and-prepare compatibilizing channel. Third, we extend the notion of the Jordan product of matrices to quantum channels and present sufficient conditions for channel compatibility. These Jordan products and their generalizations might be of independent interest. Last, we formulate the different notions of compatibility as semidefinite programs and numerically test when families of partially dephasing-depolarizing channels are compatible.



Sign in / Sign up

Export Citation Format

Share Document