scholarly journals The bandwidth theorem for locally dense graphs

2020 ◽  
Vol 8 ◽  
Author(s):  
Katherine Staden ◽  
Andrew Treglown

Abstract The bandwidth theorem of Böttcher, Schacht, and Taraz [Proof of the bandwidth conjecture of Bollobás andKomlós, Mathematische Annalen, 2009] gives a condition on the minimum degree of an n-vertex graph G that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth $o(n)$ , thereby proving a conjecture of Bollobás and Komlós [The Blow-up Lemma, Combinatorics, Probability, and Computing, 1999]. In this paper, we prove a version of the bandwidth theorem for locally dense graphs. Indeed, we prove that every locally dense n-vertex graph G with $\delta (G)> (1/2+o(1))n$ contains as a subgraph any given (spanning) H with bounded maximum degree and sublinear bandwidth.

2020 ◽  
Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Anusch Taraz

One of the first results in graph theory was Dirac's theorem which claims that if the minimum degree in a graph is at least half of the number of vertices, then it contains a Hamiltonian cycle. This result has inspired countless other results all stating that in dense graphs we can find sparse spanning subgraphs. Along these lines, one of the most far-reaching results is the celebrated _Bandwidth Theorem_, proved around 10 years ago by Böttcher, Schacht, and Taraz. It states, rougly speaking, that every $n$-vertex graph with minimum degree at least $\left( \frac{r-1}{r} + o(1)\right) n$ contains a copy of all $n$-vertex graphs $H$ such that $\chi(H) \leq r$, $\Delta (H) = O(1)$, and the bandwidth of $H$ is $o(n)$. This was conjectured earlier by Bollobás and Komlós. The proof is using the Regularity method based on the Regularity Lemma and the Blow-up Lemma. Ever since the Bandwith Theorem came out, it has been open whether one could prove a similar statement for sparse random graphs. In this remarkable, deep paper the authors do just that, they establish sparse random analogues of the Bandwidth Theorem. In particular, the authors show that, for every positive integer $\Delta$, if $p \gg \left(\frac{\log{n}}{n}\right)^{1/\Delta}$, then asymptotically almost surely, every subgraph $G\subseteq G(n, p)$ with $\delta(G) \geq \left( \frac{r-1}{r} + o(1)\right) np$ contains a copy of every $r$-colourable spanning (i.e., $n$-vertex) graph $H$ with maximum degree at most $\Delta$ and bandwidth $o(n)$, provided that $H$ contains at least $C p^{-2}$ vertices that do not lie on a triangle (of $H$). (The requirement about vertices not lying on triangles is necessary, as pointed out by Huang, Lee, and Sudakov.) The main tool used in the proof is the recent monumental sparse Blow-up Lemma due to Allen, Böttcher, Hàn, Kohayakawa, and Person.


Author(s):  
NOGA ALON ◽  
RAJKO NENADOV

AbstractWe show that for any constant Δ ≥ 2, there exists a graph Γ withO(nΔ / 2) vertices which contains everyn-vertex graph with maximum degree Δ as an induced subgraph. For odd Δ this significantly improves the best-known earlier bound and is optimal up to a constant factor, as it is known that any such graph must have at least Ω(nΔ/2) vertices.


Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Jakob Schnitzer ◽  
Anusch Taraz

Abstract The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$ , bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.


Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Mikhail Lavrov ◽  
Xujun Liu

Abstract A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$ , then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour. Our result is tight in the sense that no longer cycles (of length $>2t+r$ ) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$ -vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$ , in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$ .


1993 ◽  
Vol 2 (3) ◽  
pp. 263-269 ◽  
Author(s):  
G. Chen ◽  
R. H. Schelp

Let k be a positive integer, k ≥ 2. In this paper we study bipartite graphs G such that, for n sufficiently large, each two-coloring of the edges of the complete graph Kn gives a monochromatic copy of G, with some k of its vertices having the maximum degree of these k vertices minus the minimum degree of these k vertices (in the colored Kn) at most k − 2.


2001 ◽  
Vol 10 (5) ◽  
pp. 397-416 ◽  
Author(s):  
JÁNOS KOMLÓS ◽  
GÁBOR N. SÁRKÓZY ◽  
ENDRE SZEMERÉDI

In this paper we prove the following almost optimal theorem. For any δ > 0, there exist constants c and n0 such that, if n [ges ] n0, T is a tree of order n and maximum degree at most cn/log n, and G is a graph of order n and minimum degree at least (1/2 + δ)n, then T is a subgraph of G.


10.37236/3041 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Peter Allen ◽  
Jozef Skokan ◽  
Andreas Würfl

Kühn, Osthus and Taraz showed that for each $\gamma>0$ there exists $C$ such that any $n$-vertex graph with minimum degree $\gamma n$ contains a planar subgraph with at least $2n-C$ edges. We find the optimum value of $C$ for all $\gamma< 1/2$ and sufficiently large $n$.


10.37236/3173 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Andrew Treglown

We say that a graph $G$ has a perfect $H$-packing if there exists a set of vertex-disjoint copies of $H$ which cover all the vertices in $G$. We consider various problems concerning perfect $H$-packings: Given $n, r , D \in \mathbb N$, we characterise the edge density threshold that ensures a perfect $K_r$-packing in any graph $G$ on $n$ vertices and with minimum degree $\delta (G) \geq D$. We also give two conjectures concerning degree sequence conditions which force a graph to contain a perfect $H$-packing. Other related embedding problems are also considered. Indeed, we give a structural result concerning $K_r$-free graphs that satisfy a certain degree sequence condition.


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Shih-Yan Chen ◽  
Shin-Shin Kao ◽  
Hsun Su

International audience Assume that $n, \delta ,k$ are integers with $0 \leq k < \delta < n$. Given a graph $G=(V,E)$ with $|V|=n$. The symbol $G-F, F \subseteq V$, denotes the graph with $V(G-F)=V-F$, and $E(G-F)$ obtained by $E$ after deleting the edges with at least one endvertex in $F$. $G$ is called <i>$k$-vertex fault traceable</i>, <i>$k$-vertex fault Hamiltonian</i>, or <i>$k$-vertex fault Hamiltonian-connected</i> if $G-F$ remains traceable, Hamiltonian, and Hamiltonian-connected for all $F$ with $0 \leq |F| \leq k$, respectively. The notations $h_1(n, \delta ,k)$, $h_2(n, \delta ,k)$, and $h_3(n, \delta ,k)$ denote the minimum number of edges required to guarantee an $n$-vertex graph with minimum degree $\delta (G) \geq \delta$ to be $k$-vertex fault traceable, $k$-vertex fault Hamiltonian, and $k$-vertex fault Hamiltonian-connected, respectively. In this paper, we establish a theorem which uses the degree sequence of a given graph to characterize the $k$-vertex fault traceability/hamiltonicity/Hamiltonian-connectivity, respectively. Then we use this theorem to obtain the formulas for $h_i(n, \delta ,k)$ for $1 \leq i \leq 3$, which improves and extends the known results for $k=0$.


10.37236/6281 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Andreas Noever ◽  
Angelika Steger

In 1962, Pósa conjectured that a graph $G=(V, E)$ contains a square of a Hamiltonian cycle if $\delta(G)\ge 2n/3$. Only more than thirty years later Komlós, Sárkőzy, and Szemerédi proved this conjecture using the so-called Blow-Up Lemma. Here we extend their result to a random graph setting. We show that for every $\epsilon > 0$ and $p=n^{-1/2+\epsilon}$ a.a.s. every subgraph of $G_{n,p}$ with minimum degree at least $(2/3+\epsilon)np$ contains the square of a cycle on $(1-o(1))n$ vertices. This is almost best possible in three ways: (1) for $p\ll n^{-1/2}$ the random graph will not contain any square of a long cycle (2) one cannot hope for a resilience version for the square of a spanning cycle (as deleting all edges in the neighborhood of single vertex destroys this property) and (3) for $c<2/3$ a.a.s. $G_{n,p}$ contains a subgraph with minimum degree at least $cnp$ which does not contain the square of a path on $(1/3+c)n$ vertices.


Sign in / Sign up

Export Citation Format

Share Document