scholarly journals Optimizing the cleanliness in multi-segment disk amplifiers based on vector flow schemes

Author(s):  
Zhiyuan Ren ◽  
Jianqiang Zhu ◽  
Zhigang Liu ◽  
Xiaowei Yang

The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II (SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation of contaminant particles, is a key factor affecting the cleanliness level in the multi-segment disk amplifier. We developed a gas–solid coupling and three-dimensional flow numerical simulation model. The three-dimensional and two-phase flow model is verified by the flow-field smog experiment and the particle concentration measurement experiment with the 130-disk amplifier in SG-II. By optimizing the boundary conditions with the same flow rate, the multi-inlet vector flow scheme can not only effectively reduce the purging time, but also prevent the reverse diffusion of contaminant particles in the multi-segment disk amplifier and the deposition of contaminant particles on the surface of the Nd:glass.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2012 ◽  
Vol 212-213 ◽  
pp. 1098-1102
Author(s):  
Bin Deng ◽  
Chang Bo Jiang ◽  
Zhi Xin Guan ◽  
Chao Shen

The numerical calculation and simulation of gas-liquid two-phase flows with interfacial deformations have nowadays become more and more popular issues in various scientific and industrial fields. In this study, a three-dimensional gas-liquid two-phase flow numerical model is presented for investigating interfacial flows. The finite volume method was used to discretize the governing equations. A High-resolution scheme of VOF method (STACS) is applied to capture the free surface. The paper outlines the methodology of STACS and its validation against three typical test cases used to verify its accuracy. The results show the STACS-VOF gives very satisfactory results for three-dimensional two-phase interfacial flows problem, and this scheme performs more accurate and less diffusive preserving interface sharpness and boundedness.


2012 ◽  
Vol 468-471 ◽  
pp. 674-677 ◽  
Author(s):  
Yu Long Lei ◽  
Chang Wang ◽  
Zheng Jie Liu ◽  
Xing Zhong Li

Establish the full three-dimensional flow model of the torque converter, proper mesh the model, select the appropriate boundary conditions, and use the sliding mesh method to deal with the interactions of the impeller, turbine, and reactor in different rotation speeds. Analysis the flow rate, pressure, and the loss of full flow field passage of the torque converter, elaborate the formation mechanism of the flow field, agreement with the experimental date compare to the calculated data, more accurate than the traditional single passage model compare to the full passage model, provide the direction of design optimization of the torque converter.


Fuel ◽  
2013 ◽  
Vol 110 ◽  
pp. 196-203 ◽  
Author(s):  
D.V.R. Fontoura ◽  
E.M. Matos ◽  
J.R. Nunhez

Sign in / Sign up

Export Citation Format

Share Document