scholarly journals On the Lie enveloping algebra of a pre-Lie algebra

Author(s):  
J.-M. Oudom ◽  
D. Guin

AbstractWe construct an associative product on the symmetric module S(L) of any pre-Lie algebra L. It turns S(L) into a Hopf algebra which is isomorphic to the enveloping algebra of LLie. Then we prove that in the case of rooted trees our construction gives the Grossman-Larson Hopf algebra, which is known to be the dual of the Connes-Kreimer Hopf algebra. We also show that symmetric brace algebras and pre-Lie algebras are the same. Finally, we give a similar interpretation of the Hopf algebra of planar rooted trees.

2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Adrian Tanasa ◽  
Gerard Duchamp ◽  
Loïc Foissy ◽  
Nguyen Hoang-Nghia ◽  
Dominique Manchon

Combinatorics International audience A non-commutative, planar, Hopf algebra of planar rooted trees was defined independently by one of the authors in Foissy (2002) and by R. Holtkamp in Holtkamp (2003). In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators). Finally, we analyze the associated quadri-coalgebra and codendrifrom structures.


2009 ◽  
Vol 20 (03) ◽  
pp. 339-368 ◽  
Author(s):  
MINORU ITOH

This paper presents new generators for the center of the universal enveloping algebra of the symplectic Lie algebra. These generators are expressed in terms of the column-permanent and it is easy to calculate their eigenvalues on irreducible representations. We can regard these generators as the counterpart of central elements of the universal enveloping algebra of the orthogonal Lie algebra given in terms of the column-determinant by Wachi. The earliest prototype of all these central elements is the Capelli determinants in the universal enveloping algebra of the general linear Lie algebra.


Author(s):  
Diego Arcis ◽  
Sebastián Márquez

We endow the space of rooted planar trees with the structure of a Hopf algebra. We prove that variations of such a structure lead to Hopf algebras on the spaces of labeled trees, [Formula: see text]-trees, increasing planar trees and sorted trees. These structures are used to construct Hopf algebras on different types of permutations. In particular, we obtain new characterizations of the Hopf algebras of Malvenuto–Reutenauer and Loday–Ronco via planar rooted trees.


2022 ◽  
Vol 29 (01) ◽  
pp. 53-66
Author(s):  
Jeffrey Bergen ◽  
Piotr Grzeszczuk

Let [Formula: see text] be an automorphism and[Formula: see text] be a [Formula: see text]-skew [Formula: see text]-derivation of an [Formula: see text]-algebra [Formula: see text]. We prove that if [Formula: see text] is semiprimitive and [Formula: see text] is algebraic, then the subalgebra [Formula: see text] has nilpotent Jacobson radical. Using this result, we obtain similar relations for the Baer prime radical, the Levitzki locally nilpotent radical, and the Köthe nil radical when the field [Formula: see text] is uncountable. Then we apply it to actions of the [Formula: see text]-dimensional Taft Hopf algebra [Formula: see text] and the [Formula: see text]-analogue [Formula: see text] of the enveloping algebra of the Lie algebra [Formula: see text].


2008 ◽  
Vol 18 (02) ◽  
pp. 271-283 ◽  
Author(s):  
HAMID USEFI

Let L be a free restricted Lie algebra and R a restricted ideal of L. Denote by u(L) the restricted enveloping algebra of L and by ω(L) the associative ideal of u(L) generated by L. The purpose of this paper is to identify the subalgebra R ∩ ωn(L)ω(R) in terms of R only. This problem is the analogue of the Fox problem for free groups.


2010 ◽  
Vol 82 (3) ◽  
pp. 401-423
Author(s):  
XIN TANG

AbstractLet 𝒰(𝔯(1)) denote the enveloping algebra of the two-dimensional nonabelian Lie algebra 𝔯(1) over a base field 𝕂. We study the maximal abelian ad-nilpotent (mad) associative subalgebras and finite-dimensional Lie subalgebras of 𝒰(𝔯(1)). We first prove that the set of noncentral elements of 𝒰(𝔯(1)) admits the Dixmier partition, 𝒰(𝔯(1))−𝕂=⋃ 5i=1Δi, and establish characterization theorems for elements in Δi, i=1,3,4. Then we determine the elements in Δi, i=1,3 , and describe the eigenvalues for the inner derivation ad Bx,x∈Δi, i=3,4 . We also derive other useful results for elements in Δi, i=2,3,4,5 . As an application, we find all framed mad subalgebras of 𝒰(𝔯(1)) and determine all finite-dimensional nonabelian Lie algebras that can be realized as Lie subalgebras of 𝒰(𝔯(1)) . We also study the realizations of the Lie algebra 𝔯(1) in 𝒰(𝔯(1)) in detail.


1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.


2018 ◽  
Vol 123 (2) ◽  
pp. 220-238
Author(s):  
Yves Félix ◽  
Steve Halperin

The depth of an augmented ring $\varepsilon \colon A\to k $ is the least $p$, or ∞, such that \begin {equation*} \Ext _A^p(k , A)\neq 0. \end {equation*} When $X$ is a simply connected finite type CW complex, $H_*(\Omega X;\mathbb {Q})$ is a Hopf algebra and the universal enveloping algebra of the Lie algebra $L_X$ of primitive elements. It is known that $\depth H_*(\Omega X;\mathbb {Q}) \leq \cat X$, the Lusternik-Schnirelmann category of $X$. For any connected CW complex we construct a completion $\widehat {H}(\Omega X)$ of $H_*(\Omega X;\mathbb {Q})$ as a complete Hopf algebra with primitive sub Lie algebra $L_X$, and define $\depth X$ to be the least $p$ or ∞ such that \[ \Ext ^p_{UL_X}(\mathbb {Q}, \widehat {H}(\Omega X))\neq 0. \] Theorem: for any connected CW complex, $\depth X\leq \cat X$.


1996 ◽  
Vol 120 (2) ◽  
pp. 193-206
Author(s):  
J. R. Bolgar

AbstractLet L be a Lie algebra over a field of characteristic zero. We study the uni versai left-symmetric enveloping algebra U(L) introduced Dan Segal in [9]. We prove some uniqueness results for these algebras and determine their automorphism groups, both as left-symmetric algebras and as Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document