The depth and LS category of a topological space

2018 ◽  
Vol 123 (2) ◽  
pp. 220-238
Author(s):  
Yves Félix ◽  
Steve Halperin

The depth of an augmented ring $\varepsilon \colon A\to k $ is the least $p$, or ∞, such that \begin {equation*} \Ext _A^p(k , A)\neq 0. \end {equation*} When $X$ is a simply connected finite type CW complex, $H_*(\Omega X;\mathbb {Q})$ is a Hopf algebra and the universal enveloping algebra of the Lie algebra $L_X$ of primitive elements. It is known that $\depth H_*(\Omega X;\mathbb {Q}) \leq \cat X$, the Lusternik-Schnirelmann category of $X$. For any connected CW complex we construct a completion $\widehat {H}(\Omega X)$ of $H_*(\Omega X;\mathbb {Q})$ as a complete Hopf algebra with primitive sub Lie algebra $L_X$, and define $\depth X$ to be the least $p$ or ∞ such that \[ \Ext ^p_{UL_X}(\mathbb {Q}, \widehat {H}(\Omega X))\neq 0. \] Theorem: for any connected CW complex, $\depth X\leq \cat X$.

1981 ◽  
Vol 89 (3) ◽  
pp. 473-490 ◽  
Author(s):  
Richard Kane

By an H-space (X, μ) we will mean a topological space X having the homotopy type of a connected CW complex of finite type together with a basepoint preserving map μ: x × X → X with two sided homotopy unit. Let p be a prime and let /p be the integers reduced modp. Given an H-space (X, μ) then H*(X;/p) is a commutative associative Hopf algebra over the Steenrod algebra A*(p) and H*(X;/p) is iso- morphic, as an algebra, to a tensor product [⊗ , where each algebra At is generated by a single element ai (see Theorem 7.11 of (24)). The decomposition Ai is called a Borel decomposition and the elements {ai} are called the Borel generators of the decomposition. The decomposition ⊗ Ai and the resulting generators {at} are far from unique. Many choices are possible. Since A*(p) acts on H*(X;/p) an obvious restriction would be to choose the Borel decomposition to be compatible with this action. We would like the /p module generated by the Borel generators and their iterated pth powers to be invariant under the action of A * (p). More precisely we would like H*(X;/p) to be the enveloping algebra U(M) of an unstable Steenrod module M (see § 2). If H*(X;/p) admits such a choice then it is called a U(M) algebra. The fact that H*(X; /p) is a U(M) algebra has applications in homotopy theory. In particular there exist unstable Adams spectral sequences which can be used to calculate the homotopy groups of X (see (21) and (7)). However, the question of U(M) structures for modp cohomology seems of most interest simply as a classification device for finite H-spaces.


2009 ◽  
Vol 86 (1) ◽  
pp. 1-15 ◽  
Author(s):  
JONATHAN BROWN ◽  
JONATHAN BRUNDAN

AbstractWe construct an explicit set of algebraically independent generators for the center of the universal enveloping algebra of the centralizer of a nilpotent matrix in the general linear Lie algebra over a field of characteristic zero. In particular, this gives a new proof of the freeness of the center, a result first proved by Panyushev, Premet and Yakimova.


2009 ◽  
Vol 20 (03) ◽  
pp. 339-368 ◽  
Author(s):  
MINORU ITOH

This paper presents new generators for the center of the universal enveloping algebra of the symplectic Lie algebra. These generators are expressed in terms of the column-permanent and it is easy to calculate their eigenvalues on irreducible representations. We can regard these generators as the counterpart of central elements of the universal enveloping algebra of the orthogonal Lie algebra given in terms of the column-determinant by Wachi. The earliest prototype of all these central elements is the Capelli determinants in the universal enveloping algebra of the general linear Lie algebra.


1995 ◽  
Vol 10 (11) ◽  
pp. 873-883 ◽  
Author(s):  
M. KHORRAMI ◽  
A. SHARIATI ◽  
M.R. ABOLHASSANI ◽  
A. AGHAMOHAMMADI

Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.


Author(s):  
Anar Dosiev

AbstractIn the paper we propose an operator approach to the noncommutative Taylor localization problem based on the local left invertibility for operator tuples acting on a Fréchet space. We prove that the canonical homomorphism of the universal enveloping algebra of a nilpotent Lie algebra into its Arens-Michael envelope is the Taylor localization whenever has normal growth.


2022 ◽  
Vol 29 (01) ◽  
pp. 53-66
Author(s):  
Jeffrey Bergen ◽  
Piotr Grzeszczuk

Let [Formula: see text] be an automorphism and[Formula: see text] be a [Formula: see text]-skew [Formula: see text]-derivation of an [Formula: see text]-algebra [Formula: see text]. We prove that if [Formula: see text] is semiprimitive and [Formula: see text] is algebraic, then the subalgebra [Formula: see text] has nilpotent Jacobson radical. Using this result, we obtain similar relations for the Baer prime radical, the Levitzki locally nilpotent radical, and the Köthe nil radical when the field [Formula: see text] is uncountable. Then we apply it to actions of the [Formula: see text]-dimensional Taft Hopf algebra [Formula: see text] and the [Formula: see text]-analogue [Formula: see text] of the enveloping algebra of the Lie algebra [Formula: see text].


Author(s):  
J.-M. Oudom ◽  
D. Guin

AbstractWe construct an associative product on the symmetric module S(L) of any pre-Lie algebra L. It turns S(L) into a Hopf algebra which is isomorphic to the enveloping algebra of LLie. Then we prove that in the case of rooted trees our construction gives the Grossman-Larson Hopf algebra, which is known to be the dual of the Connes-Kreimer Hopf algebra. We also show that symmetric brace algebras and pre-Lie algebras are the same. Finally, we give a similar interpretation of the Hopf algebra of planar rooted trees.


Sign in / Sign up

Export Citation Format

Share Document